JSON檔案以可讀的格式將資料儲存為文字。 JSON代表JavaScript Object Notation。 使用read_json
函式,Pandas可以讀取JSON檔案。
通過將以下資料複製到文字編輯器(如記事本)來建立JSON檔案。選擇檔案型別作為所有檔案(.),使用.json
擴充套件名儲存檔案,假設儲存的檔案名稱為:input.json。
{
"ID":["1","2","3","4","5","6","7","8" ],
"Name":["Rick","Dan","Michelle","Ryan","Gary","Nina","Simon","Guru" ]
"Salary":["623.3","515.2","611","729","843.25","578","632.8","722.5" ],
"StartDate":[ "1/1/2012","9/23/2013","11/15/2014","5/11/2014","3/27/2015","5/21/2013",
"7/30/2013","6/17/2014"],
"Dept":[ "IT","Operations","IT","HR","Finance","IT","Operations","Finance"]
}
Pandas庫的read_json
函式可用於將JSON檔案讀入為pandas DataFrame資料結構型別。
import pandas as pd
data = pd.read_json('path/input.json')
print (data)
當我們執行上面的程式碼時,它會產生以下結果。
Dept ID Name Salary StartDate
0 IT 1 Rick 623.30 1/1/2012
1 Operations 2 Dan 515.20 9/23/2013
2 IT 3 Tusar 611.00 11/15/2014
3 HR 4 Ryan 729.00 5/11/2014
4 Finance 5 Gary 843.25 3/27/2015
5 IT 6 Rasmi 578.00 5/21/2013
6 Operations 7 Pranab 632.80 7/30/2013
7 Finance 8 Guru 722.50 6/17/2014
與在前一章中已經看到的讀取CSV檔案類似,讀取JSON檔案到DataFrame後,pandas庫的read_json
函式也可用於讀取一些特定列和特定行。 使用.loc()
的多軸索引方法。選擇顯示salary
和name
列的某些行。
import pandas as pd
data = pd.read_json('path/input.xlsx')
# Use the multi-axes indexing funtion
print (data.loc[[1,3,5],['salary','name']])
當我們執行上面的程式碼時,它會產生以下結果。
salary name
1 515.2 Dan
3 729.0 Ryan
5 578.0 Rasmi
還可以將to_json
函式與引數一起應用於將JSON檔案內容讀入單個記錄。
import pandas as pd
data = pd.read_json('path/input.xlsx')
print(data.to_json(orient='records', lines=True))
執行上面範例程式碼,得到以下結果 -
{"Dept":"IT","ID":1,"Name":"Rick","Salary":623.3,"StartDate":"1\/1\/2012"}
{"Dept":"Operations","ID":2,"Name":"Dan","Salary":515.2,"StartDate":"9\/23\/2013"}
{"Dept":"IT","ID":3,"Name":"Tusar","Salary":611.0,"StartDate":"11\/15\/2014"}
{"Dept":"HR","ID":4,"Name":"Ryan","Salary":729.0,"StartDate":"5\/11\/2014"}
{"Dept":"Finance","ID":5,"Name":"Gary","Salary":843.25,"StartDate":"3\/27\/2015"}
{"Dept":"IT","ID":6,"Name":"Rasmi","Salary":578.0,"StartDate":"5\/21\/2013"}
{"Dept":"Operations","ID":7,"Name":"Pranab","Salary":632.8,"StartDate":"7\/30\/2013"}
{"Dept":"Finance","ID":8,"Name":"Guru","Salary":722.5,"StartDate":"6\/17\/2014"}