select, pselect, FD_CLR, FD_ISSET, FD_SET, FD_ZERO - 同步I / O複用
/* According to POSIX.1-2001 */ #include <sys/select.h> /* According to earlier standards */ #include <sys/time.h> #include <sys/types.h> #include <unistd.h> int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout); void FD_CLR(int fd, fd_set *set); int FD_ISSET(int fd, fd_set *set); void FD_SET(int fd, fd_set *set); void FD_ZERO(fd_set *set); #define _XOPEN_SOURCE 600 #include <sys/select.h>int pselect(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, const struct timespec *timeout, const sigset_t *sigmask); |
select() and pselect() allow a program to monitor multiple file descriptors, waiting until one or more of the file descriptors become "ready" for some class of I/O operation (e.g., input possible). A file descriptor is considered ready if it is possible to perform the corresponding I/O operation (e.g., read(2)) without blocking.
The operation of select() and pselect() is identical, with three differences:
S.N. | 描述 |
---|---|
(i) | select() uses a timeout that is a struct timeval (with seconds and microseconds), while pselect() uses a struct timespec (with seconds and nanoseconds). |
(ii) | select() may update the timeout argument to indicate how much time was left. pselect() does not change this argument. |
(iii) | select() has no sigmask argument, and behaves as pselect() called with NULL sigmask. |
Three independent sets of file descriptors are watched. Those listed in readfds will be watched to see if characters become available for reading (more precisely, to see if a read will not block; in particular, a file descriptor is also ready on end-of-file),those inwritefds will be watched to see if a write will not block, and those in exceptfds will be watched for exceptions. On exit, the sets are modified in place to indicate which file descriptors actually changed status. Each of the three file descriptor sets may be specified as NULL if no file descriptors are to be watched for the corresponding class of events.
Four macros are provided to manipulate the sets.
FD_ZERO() clears a set.
FD_SET() and
FD_CLR() respectively add and remove a given file descriptor from a set.
FD_ISSET() tests to see if a file descriptor is part of the set;
this is useful after select() returns.
nfds is the highest-numbered file descriptor in any of the three sets, plus 1.
timeout is an upper bound on the amount of time elapsed before select() returns. It may be zero, causing select() to return immediately. (This is useful for polling.) Iftimeout is NULL (no timeout), select() can block indefinitely.
sigmask is a pointer to a signal mask (see sigprocmask(2)); if it is not NULL, thenpselect() first replaces the current signal mask by the one pointed to by sigmask, then does the ‘select’ function, and then restores the original signal mask.
Other than the difference in the precision of the timeout argument, the followingpselect() call:
ready = pselect(nfds, &readfds, &writefds, &exceptfds, timeout, &sigmask); |
is equivalent to atomically executing the following calls:
sigset_t origmask; sigprocmask(SIG_SETMASK, &sigmask, &origmask); ready = select(nfds, &readfds, &writefds, &exceptfds, timeout); sigprocmask(SIG_SETMASK, &origmask, NULL); |
The reason that pselect() is needed is that if one wants to wait for either a signal or for a file descriptor to become ready, then an atomic test is needed to prevent race conditions. (Suppose the signal handler sets a global flag and returns. Then a test of this global flag followed by a call of select() could hang indefinitely if the signal arrived just after the test but just before the call. By contrast, pselect() allows one to first block signals, handle the signals that have come in, then call pselect() with the desiredsigmask, avoiding the race.)
The time structures involved are defined in <sys/time.h> and look like
struct timeval { long tv_sec; /* seconds */ long tv_usec; /* microseconds */ }; |
and
struct timespec { long tv_sec; /* seconds */ long tv_nsec; /* nanoseconds */ }; |
(However, see below on the POSIX.1-2001 versions.). Some code calls select() with all three sets empty, n zero, and a non-NULL timeout as a fairly portable way to sleep with subsecond precision.
On Linux, select() modifies timeout to reflect the amount of time not slept; most other implementations do not do this. (POSIX.1-2001 permits either behaviour.) This causes problems both when Linux code which reads timeout is ported to other operating systems, and when code is ported to Linux that reuses a struct timeval for multipleselect()s in a loop without reinitializing it. Consider timeout to be undefined afterselect() returns.
On success, select() and pselect() return the number of file descriptors contained in the three returned descriptor sets (that is, the total number of bits that are set in readfds,writefds, exceptfds) which may be zero if the timeout expires before anything interesting happens. On error, -1 is returned, and errno is set appropriately; the sets and timeoutbecome undefined, so do not rely on their contents after an error.
標籤 | 描述 |
---|---|
EBADF | An invalid file descriptor was given in one of the sets. (Perhaps a file descriptor that was already closed, or one on which an error has occurred.) |
EINTR | A signal was caught. |
EINVAL | nfds is negative or the value contained withintimeout is invalid. |
ENOMEM | unable to allocate memory for internal tables. |
#include <stdio.h> #include <sys/time.h> #include <sys/types.h> #include <unistd.h> int main(void) { fd_set rfds; struct timeval tv; int retval; /* Watch stdin (fd 0) to see when it has input. */ FD_ZERO(&rfds); FD_SET(0, &rfds); /* Wait up to five seconds. */ tv.tv_sec = 5; tv.tv_usec = 0; retval = select(1, &rfds, NULL, NULL, &tv); /* Don’t rely on the value of tv now! */ if (retval == -1) perror("select()"); else if (retval) printf("Data is available now.\n"); /* FD_ISSET(0, &rfds) will be true. */ else printf("No data within five seconds.\n"); return 0; } |
select() conforms to POSIX.1-2001 and 4.4BSD
pselect() is defined in POSIX.1g, and in POSIX.1-2001.