標記單詞


標記是文字處理的基本特徵,我們將單詞標記為語法分類。借助tokenizationpos_tag函式來為每個單詞建立標籤。

import nltk

text = nltk.word_tokenize("A Python is a serpent which eats eggs from the nest")
tagged_text=nltk.pos_tag(text)
print(tagged_text)

執行上面範例程式碼,得到以下結果 -

[('A', 'DT'), ('Python', 'NNP'), ('is', 'VBZ'), ('a', 'DT'), ('serpent', 'NN'), 
('which', 'WDT'), ('eats', 'VBZ'), ('eggs', 'NNS'), ('from', 'IN'), 
('the', 'DT'), ('nest', 'JJS')]

標籤說明

可以使用以下顯示內建值的程式來描述每個標記的含義。

import nltk

nltk.help.upenn_tagset('NN')
nltk.help.upenn_tagset('IN')
nltk.help.upenn_tagset('DT')

當執行上面的程式時,我們得到以下輸出 -

NN: noun, common, singular or mass
    common-carrier cabbage knuckle-duster Casino afghan shed thermostat
    investment slide humour falloff slick wind hyena override subhumanity
    machinist ...
IN: preposition or conjunction, subordinating
    astride among uppon whether out inside pro despite on by throughout
    below within for towards near behind atop around if like until below
    next into if beside ...
DT: determiner
    all an another any both del each either every half la many much nary
    neither no some such that the them these this those

標記語料庫

還可以標記語料庫資料並檢視該語料庫中每個單詞的標記結果。參考以下實現程式碼 -

import nltk

from nltk.tokenize import sent_tokenize
from nltk.corpus import gutenberg
sample = gutenberg.raw("blake-poems.txt")
tokenized = sent_tokenize(sample)
for i in tokenized[:2]:
            words = nltk.word_tokenize(i)
            tagged = nltk.pos_tag(words)
            print(tagged)

執行上面範例程式碼,得到以下結果 -

[([', 'JJ'), (Poems', 'NNP'), (by', 'IN'), (William', 'NNP'), (Blake', 'NNP'), (1789', 'CD'), 
(]', 'NNP'), (SONGS', 'NNP'), (OF', 'NNP'), (INNOCENCE', 'NNP'), (AND', 'NNP'), (OF', 'NNP'), 
(EXPERIENCE', 'NNP'), (and', 'CC'), (THE', 'NNP'), (BOOK', 'NNP'), (of', 'IN'), 
(THEL', 'NNP'), (SONGS', 'NNP'), (OF', 'NNP'), (INNOCENCE', 'NNP'), (INTRODUCTION', 'NNP'), 
(Piping', 'VBG'), (down', 'RP'), (the', 'DT'), (valleys', 'NN'), (wild', 'JJ'), 
(,', ','), (Piping', 'NNP'), (songs', 'NNS'), (of', 'IN'), (pleasant', 'JJ'), (glee', 'NN'),
 (,', ','), (On', 'IN'), (a', 'DT'), (cloud', 'NN'), (I', 'PRP'), (saw', 'VBD'), 
 (a', 'DT'), (child', 'NN'), (,', ','), (And', 'CC'), (he', 'PRP'), (laughing', 'VBG'), 
 (said', 'VBD'), (to', 'TO'), (me', 'PRP'), (:', ':'), (``', '``'), (Pipe', 'VB'),
 (a', 'DT'), (song', 'NN'), (about', 'IN'), (a', 'DT'), (Lamb', 'NN'), (!', '.'), (u"''", "''")]