雪花演算法是Twitter推出的⼀個⽤於⽣成分佈式ID的策略。
雪花演算法是⼀個演算法,基於這個演算法可以⽣成ID,⽣成的ID是⼀個long型,那麼在Java中⼀個long
型是8個位元組,算下來是64bit,如下是使⽤雪花演算法⽣成的⼀個ID的⼆進位制形式示意:
/**
* 官方推出,Scala程式語言來實現的
* Java前輩用Java語言實現了雪花演算法
*/
public class IdWorker{
//下面 下麪兩個每個5位,加起來就是10位的工作機器id
private long workerId; //工作id
private long datacenterId; //數據id
//12位元的序列號
private long sequence;
public IdWorker(long workerId, long datacenterId, long sequence){
// sanity check for workerId
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
}
System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);
this.workerId = workerId;
this.datacenterId = datacenterId;
this.sequence = sequence;
}
//初始時間戳
private long twepoch = 1288834974657L;
//長度爲5位
private long workerIdBits = 5L;
private long datacenterIdBits = 5L;
//最大值
private long maxWorkerId = -1L ^ (-1L << workerIdBits);
private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
//序列號id長度
private long sequenceBits = 12L;
//序列號最大值
private long sequenceMask = -1L ^ (-1L << sequenceBits);
//工作id需要左移的位數,12位元
private long workerIdShift = sequenceBits;
//數據id需要左移位數 12+5=17位
private long datacenterIdShift = sequenceBits + workerIdBits;
//時間戳需要左移位數 12+5+5=22位
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
//上次時間戳,初始值爲負數
private long lastTimestamp = -1L;
public long getWorkerId(){
return workerId;
}
public long getDatacenterId(){
return datacenterId;
}
public long getTimestamp(){
return System.currentTimeMillis();
}
//下一個ID生成演算法
public synchronized long nextId() {
long timestamp = timeGen();
//獲取當前時間戳如果小於上次時間戳,則表示時間戳獲取出現異常
if (timestamp < lastTimestamp) {
System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
lastTimestamp - timestamp));
}
//獲取當前時間戳如果等於上次時間戳
//說明:還處在同一毫秒內,則在序列號加1;否則序列號賦值爲0,從0開始。
if (lastTimestamp == timestamp) { // 0 - 4095
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0;
}
//將上次時間戳值重新整理
lastTimestamp = timestamp;
/**
* 返回結果:
* (timestamp - twepoch) << timestampLeftShift) 表示將時間戳減去初始時間戳,再左移相應位數
* (datacenterId << datacenterIdShift) 表示將數據id左移相應位數
* (workerId << workerIdShift) 表示將工作id左移相應位數
* | 是按位元或運算子,例如:x | y,只有當x,y都爲0的時候結果才爲0,其它情況結果都爲1。
* 因爲個部分只有相應位上的值有意義,其它位上都是0,所以將各部分的值進行 | 運算就能得到最終拼接好的id
*/
return ((timestamp - twepoch) << timestampLeftShift) |
(datacenterId << datacenterIdShift) |
(workerId << workerIdShift) |
sequence;
}
//獲取時間戳,並與上次時間戳比較
private long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
//獲取系統時間戳
private long timeGen(){
return System.currentTimeMillis();
}
public static void main(String[] args) {
IdWorker worker = new IdWorker(21,10,0);
for (int i = 0; i < 100; i++) {
System.out.println(worker.nextId());
}
}
}