Offline Reinforcement Learning (RL) aims to learn policies from previously collected datasets without exploring the environment. Directly applying off-policy algorithms to offline RL usually fails due to the extrapolation error caused by the out-of-distribution (OOD) actions. Previous methods tackle such problem by penalizing the Q-values of OOD actions or constraining the trained policy to be close to the behavior policy. Nevertheless, such methods typically prevent the generalization of value functions beyond the offline data and also lack precise characterization of OOD data. In this paper, we propose Pessimistic Bootstrapping for offline RL (PBRL), a purely uncertainty-driven offline algorithm without explicit policy constraints. Specifically, PBRL conducts uncertainty quantification via the disagreement of bootstrapped Q-functions, and performs pessimistic updates by penalizing the value function based on the estimated uncertainty. To tackle the extrapolating error, we further propose a novel OOD sampling method. We show that such OOD sampling and pessimistic bootstrapping yields provable uncertainty quantifier in linear MDPs, thus providing the theoretical underpinning for PBRL. Extensive experiments on D4RL benchmark show that PBRL has better performance compared to the state-of-the-art algorithms.
idea:基於 uncertainty 來懲罰 Q function。
PBRL 的 loss function 由兩部分組成:① ID 資料的 TD-error、② OOD 資料的偽 TD-error。
① ID 資料的 TD-error,見公式 (4),大概就是 \(\hat T^{in}Q^k(s,a):=r+\gamma \hat E\big[Q^k(s',a')-\beta_{in}U(s',a')\big]\) ,對所轉移去的 (s',a') 的 uncertainty 進行懲罰。
② OOD 資料的偽 TD-error,s' 好像是 ID 的 state,a' 是 policy 生成的(可能是 OOD 的)action。
loss function:
policy: policy 希望最大化 Q function,具體的,最大化 ensemble Q 中的最小值。
3.3 是理論。