自定義Graph Component:1.2-其它Tokenizer具體實現

2023-11-14 06:00:21

  本文主要介紹了Rasa中相關Tokenizer的具體實現,包括預設Tokenizer和第三方Tokenizer。前者包括JiebaTokenizer、MitieTokenizer、SpacyTokenizer和WhitespaceTokenizer,後者包括BertTokenizer和AnotherWhitespaceTokenizer。

一.JiebaTokenizer
  JiebaTokenizer類整體程式碼結構,如下所示:   載入自定義字典程式碼,如下所示[3]:

@staticmethod
def _load_custom_dictionary(path: Text) -> None:
    """Load all the custom dictionaries stored in the path.  # 載入儲存在路徑中的所有自定義字典。
    More information about the dictionaries file format can be found in the documentation of jieba. https://github.com/fxsjy/jieba#load-dictionary
    "
""
    print("JiebaTokenizer._load_custom_dictionary()")
    import jieba

    jieba_userdicts = glob.glob(f"{path}/*")  # 獲取路徑下的所有檔案。
    for jieba_userdict in jieba_userdicts:  # 遍歷所有檔案。
        logger.info(f"Loading Jieba User Dictionary at {jieba_userdict}")  # 載入結巴使用者字典。
        jieba.load_userdict(jieba_userdict)  # 載入使用者字典。

  實現分詞的程式碼為tokenize()方法,如下所示:

def tokenize(self, message: Message, attribute: Text) -> List[Token]:
    """Tokenizes the text of the provided attribute of the incoming message."""  # 對傳入訊息的提供屬性的文字進行tokenize。
    print("JiebaTokenizer.tokenize()")

    import jieba

    text = message.get(attribute)  # 獲取訊息的屬性

    tokenized = jieba.tokenize(text)  # 對文字進行標記化
    tokens = [Token(word, start) for (word, start, end) in tokenized]  # 生成標記

    return self._apply_token_pattern(tokens)

  self._apply_token_pattern(tokens)資料型別為List[Token]。Token的資料型別為:

class Token:
    # 由將單個訊息拆分為多個Token的Tokenizers使用
    def __init__(
        self,
        text: Text,
        start: int,
        end: Optional[int] = None,
        data: Optional[Dict[Text, Any]] = None,
        lemma: Optional[Text] = None,
    ) -> None:
        """建立一個Token
        Args:
            text: The token text.  # token文字
            start: The start index of the token within the entire message.  # token在整個訊息中的起始索引
            end: The end index of the token within the entire message.  # token在整個訊息中的結束索引
            data: Additional token data.  # 附加的token資料
            lemma: An optional lemmatized version of the token text.  # token文字的可選詞形還原版本
        "
""
        self.text = text
        self.start = start
        self.end = end if end else start + len(text)
        self.data = data if data else {}
        self.lemma = lemma or text

  特別說明:JiebaTokenizer元件的is_trainable=True。


二.MitieTokenizer
  MitieTokenizer類整體程式碼結構,如下所示:

  核心程式碼tokenize()方法程式碼,如下所示:

def tokenize(self, message: Message, attribute: Text) -> List[Token]:
    """Tokenizes the text of the provided attribute of the incoming message."""  # 對傳入訊息的提供屬性的文字進行tokenize
    import mitie

    text = message.get(attribute)

    encoded_sentence = text.encode(DEFAULT_ENCODING)
    tokenized = mitie.tokenize_with_offsets(encoded_sentence)
    tokens = [
        self._token_from_offset(token, offset, encoded_sentence)
        for token, offset in tokenized
    ]

    return self._apply_token_pattern(tokens)

  特別說明:mitie庫在Windows上安裝可能麻煩些。MitieTokenizer元件的is_trainable=False。


三.SpacyTokenizer
  首先安裝Spacy類庫和模型[4][5],如下所示:

pip3 install -U spacy
python3 -m spacy download zh_core_web_sm

  SpacyTokenizer類整體程式碼結構,如下所示:   核心程式碼tokenize()方法程式碼,如下所示:

def tokenize(self, message: Message, attribute: Text) -> List[Token]:
    """Tokenizes the text of the provided attribute of the incoming message."""  # 對傳入訊息的提供屬性的文字進行tokenize
    doc = self._get_doc(message, attribute)  # doc是一個Doc物件
    if not doc:
        return []

    tokens = [
        Token(
            t.text, t.idx, lemma=t.lemma_, data={POS_TAG_KEY: self._tag_of_token(t)}
        )
        for t in doc
        if t.text and t.text.strip()
    ]

  特別說明:SpacyTokenizer元件的is_trainable=False。即SpacyTokenizer只有執行元件run_SpacyTokenizer0,沒有訓練元件。如下所示:

四.WhitespaceTokenizer
  WhitespaceTokenizer主要是針對英文的,不可用於中文。WhitespaceTokenizer類整體程式碼結構,如下所示:   其中,predict_schema和train_schema,如下所示:   rasa shell nlu --debug結果,如下所示:   特別說明:WhitespaceTokenizer元件的is_trainable=False。


五.BertTokenizer
  rasa shell nlu --debug結果,如下所示:

  BertTokenizer程式碼具體實現,如下所示:
"""
https://github.com/daiyizheng/rasa-chinese-plus/blob/master/rasa_chinese_plus/nlu/tokenizers/bert_tokenizer.py
"
""
from typing import List, Text, Dict, Any
from rasa.engine.recipes.default_recipe import DefaultV1Recipe
from rasa.shared.nlu.training_data.message import Message
from transformers import AutoTokenizer
from rasa.nlu.tokenizers.tokenizer import Tokenizer, Token


@DefaultV1Recipe.register(
    DefaultV1Recipe.ComponentType.MESSAGE_TOKENIZER, is_trainable=False
)
class BertTokenizer(Tokenizer):
    def __init__(self, config: Dict[Text, Any] = None) -> None:
        """
        :param config: {"
pretrained_model_name_or_path":"", "cache_dir":"", "use_fast":""}
        "
""
        super().__init__(config)
        self.tokenizer = AutoTokenizer.from_pretrained(
            config["pretrained_model_name_or_path"],  # 指定預訓練模型的名稱或路徑
            cache_dir=config.get("cache_dir"),  # 指定快取目錄
            use_fast=True if config.get("use_fast"else False  # 是否使用快速模式
        )

    @classmethod
    def required_packages(cls) -> List[Text]:
        return ["transformers"]  # 指定依賴的包

    @staticmethod
    def get_default_config() -> Dict[Text, Any]:
        """The component's default config (see parent class for full docstring)."""
        return {
            # Flag to check whether to split intents
            "intent_tokenization_flag": False,
            # Symbol on which intent should be split
            "intent_split_symbol""_",
            # Regular expression to detect tokens
            "token_pattern": None,
            # Symbol on which prefix should be split
            "prefix_separator_symbol": None,
        }

    def tokenize(self, message: Message, attribute: Text) -> List[Token]:
        text = message.get(attribute)  # 獲取文字
        encoded_input = self.tokenizer(text, return_offsets_mapping=True, add_special_tokens=False)  # 編碼文字
        token_position_pair = zip(encoded_input.tokens(), encoded_input["offset_mapping"])  # 將編碼後的文字和偏移量對映成一個元組
        tokens = [Token(text=token_text, start=position[0], end=position[1]) for token_text, position in token_position_pair]  # 將元組轉換成Token物件

        return self._apply_token_pattern(tokens)

  特別說明:BertTokenizer元件的is_trainable=False。


六.AnotherWhitespaceTokenizer
  AnotherWhitespaceTokenizer程式碼具體實現,如下所示:

from __future__ import annotations
from typing import Any, Dict, List, Optional, Text

from rasa.engine.graph import ExecutionContext
from rasa.engine.recipes.default_recipe import DefaultV1Recipe
from rasa.engine.storage.resource import Resource
from rasa.engine.storage.storage import ModelStorage
from rasa.nlu.tokenizers.tokenizer import Token, Tokenizer
from rasa.shared.nlu.training_data.message import Message


@DefaultV1Recipe.register(
    DefaultV1Recipe.ComponentType.MESSAGE_TOKENIZER, is_trainable=False
)
class AnotherWhitespaceTokenizer(Tokenizer):
    """Creates features for entity extraction."""
    @staticmethod
    def not_supported_languages() -> Optional[List[Text]]:
        """The languages that are not supported."""
        return ["zh""ja""th"]

    @staticmethod
    def get_default_config() -> Dict[Text, Any]:
        """Returns the component's default config."""
        return {
            # This *must* be added due to the parent class.
            "intent_tokenization_flag": False,
            # This *must* be added due to the parent class.
            "intent_split_symbol""_",
            # This is a, somewhat silly, config that we pass
            "only_alphanum": True,
        }

    def __init__(self, config: Dict[Text, Any]) -> None:
        """Initialize the tokenizer."""
        super().__init__(config)
        self.only_alphanum = config["only_alphanum"]

    def parse_string(self, s):
        if self.only_alphanum:
            return "".join([c for c in s if ((c == " ") or str.isalnum(c))])
        return s

    @classmethod
    def create(
        cls,
        config: Dict[Text, Any],
        model_storage: ModelStorage,
        resource: Resource,
        execution_context: ExecutionContext,
    ) -> AnotherWhitespaceTokenizer:
        return cls(config)

    def tokenize(self, message: Message, attribute: Text) -> List[Token]:
        text = self.parse_string(message.get(attribute))
        words = [w for w in text.split(" "if w]

        # if we removed everything like smiles `:)`, use the whole text as 1 token
        if not words:
            words = [text]

        # the ._convert_words_to_tokens() method is from the parent class.
        tokens = self._convert_words_to_tokens(words, text)

        return self._apply_token_pattern(tokens)

  特別說明:AnotherWhitespaceTokenizer元件的is_trainable=False。


參考文獻:
[1]自定義Graph Component:1.1-JiebaTokenizer具體實現:https://mp.weixin.qq.com/s/awGiGn3uJaNcvJBpk4okCA
[2]https://github.com/RasaHQ/rasa
[3]https://github.com/fxsjy/jieba#load-dictionary
[4]spaCy GitHub:https://github.com/explosion/spaCy
[5]spaCy官網:https://spacy.io/
[6]https://github.com/daiyizheng/rasa-chinese-plus/blob/master/rasa_chinese_plus/nlu/tokenizers/bert_tokenizer.py