這篇文章,我們聊一聊 RocketMQ 的訊息軌跡設計思路。
查詢訊息軌跡可作為生產環境中排查問題強有力的資料支援 ,也是研發同學解決線上問題的重要武器之一。
訊息軌跡是指一條訊息從生產者傳送到 Broker , 再到消費者消費,整個過程中的各個相關節點的時間、狀態等資料匯聚而成的完整鏈路資訊。
當我們需要查詢訊息軌跡時,需要明白一點:訊息軌跡資料是儲存在 Broker 伺服器端,我們需要定義一個主題,在生產者,消費者端定義軌跡勾點。
# 開啟訊息軌跡
traceTopicEnable=true
public DefaultMQProducer(final String producerGroup, boolean enableMsgTrace)
public DefaultMQProducer(final String producerGroup, boolean enableMsgTrace, final String customizedTraceTopic)
在生產者的建構函式裡,有兩個核心引數:
RMQ_SYS_TRACE_TOPIC
。執行如下的生產者程式碼:
public class Producer {
public static final String PRODUCER_GROUP = "mytestGroup";
public static final String DEFAULT_NAMESRVADDR = "127.0.0.1:9876";
public static final String TOPIC = "example";
public static final String TAG = "TagA";
public static void main(String[] args) throws MQClientException, InterruptedException {
DefaultMQProducer producer = new DefaultMQProducer(PRODUCER_GROUP, true);
producer.setNamesrvAddr(DEFAULT_NAMESRVADDR);
producer.start();
try {
String key = UUID.randomUUID().toString();
System.out.println(key);
Message msg = new Message(
TOPIC,
TAG,
key,
("Hello RocketMQ ").getBytes(RemotingHelper.DEFAULT_CHARSET));
SendResult sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult);
} catch (Exception e) {
e.printStackTrace();
}
// 這裡休眠十秒,是為了非同步傳送軌跡訊息成功。
Thread.sleep(10000);
producer.shutdown();
}
}
在生產者程式碼中,我們指定了訊息的 key 屬性, 便於對於訊息進行高效能檢索。
執行成功之後,我們從控制檯檢視軌跡資訊。
從圖中可以看到,訊息軌跡中儲存了訊息的 儲存時間
、 儲存伺服器IP
、傳送耗時
。
和生產者類似,消費者的建構函式可以傳遞軌跡引數:
public DefaultMQPushConsumer(final String consumerGroup, boolean enableMsgTrace);
public DefaultMQPushConsumer(final String consumerGroup, boolean enableMsgTrace, final String customizedTraceTopic);
執行如下的消費者程式碼:
public class Consumer {
public static final String CONSUMER_GROUP = "exampleGruop";
public static final String DEFAULT_NAMESRVADDR = "127.0.0.1:9876";
public static final String TOPIC = "example";
public static void main(String[] args) throws InterruptedException, MQClientException {
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer(CONSUMER_GROUP , true);
consumer.setNamesrvAddr(DEFAULT_NAMESRVADDR);
consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_FIRST_OFFSET);
consumer.subscribe(TOPIC, "*");
consumer.registerMessageListener((MessageListenerConcurrently) (msg, context) -> {
System.out.printf("%s Receive New Messages: %s %n", Thread.currentThread().getName(), msg);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
});
consumer.start();
System.out.printf("Consumer Started.%n");
}
}
軌跡的實現原理主要是在生產者傳送、消費者消費時新增相關的勾點。 因此,我們只需要瞭解勾點的實現邏輯即可。
下面的程式碼是 DefaultMQProducer
的建構函式。
public DefaultMQProducer(final String namespace, final String producerGroup, RPCHook rpcHook,
boolean enableMsgTrace, final String customizedTraceTopic) {
this.namespace = namespace;
this.producerGroup = producerGroup;
defaultMQProducerImpl = new DefaultMQProducerImpl(this, rpcHook);
// if client open the message trace feature
if (enableMsgTrace) {
try {
//非同步軌跡分發器
AsyncTraceDispatcher dispatcher = new AsyncTraceDispatcher(producerGroup, TraceDispatcher.Type.PRODUCE, customizedTraceTopic, rpcHook);
dispatcher.setHostProducer(this.defaultMQProducerImpl);
traceDispatcher = dispatcher;
// 傳送訊息時新增執行勾點
this.defaultMQProducerImpl.registerSendMessageHook(
new SendMessageTraceHookImpl(traceDispatcher));
// 結束事務時新增執行勾點
this.defaultMQProducerImpl.registerEndTransactionHook(
new EndTransactionTraceHookImpl(traceDispatcher));
} catch (Throwable e) {
log.error("system mqtrace hook init failed ,maybe can't send msg trace data");
}
}
}
當是否開啟軌跡開關開啟時,建立非同步軌跡分發器 AsyncTraceDispatcher
,然後給預設的生產者實現類在傳送訊息的勾點 SendMessageTraceHookImpl
。
//傳送訊息時新增執行勾點
this.defaultMQProducerImpl.registerSendMessageHook(new SendMessageTraceHookImpl(traceDispatcher));
我們把生產者傳送訊息的流程簡化如下程式碼 :
//DefaultMQProducerImpl#sendKernelImpl
this.executeSendMessageHookBefore(context);
// 發生訊息
this.mQClientFactory.getMQClientAPIImpl().sendMessage(....)
// 生產者傳送訊息後會執行
this.executeSendMessageHookAfter(context);
進入SendMessageTraceHookImpl
類 ,該類主要有兩個方法 sendMessageBefore
和 sendMessageAfter
。
1、sendMessageBefore 方法
public void sendMessageBefore(SendMessageContext context) {
//if it is message trace data,then it doesn't recorded
if (context == null || context.getMessage().getTopic().startsWith(((AsyncTraceDispatcher) localDispatcher).getTraceTopicName())) {
return;
}
//build the context content of TuxeTraceContext
TraceContext tuxeContext = new TraceContext();
tuxeContext.setTraceBeans(new ArrayList<TraceBean>(1));
context.setMqTraceContext(tuxeContext);
tuxeContext.setTraceType(TraceType.Pub);
tuxeContext.setGroupName(NamespaceUtil.withoutNamespace(context.getProducerGroup()));
//build the data bean object of message trace
TraceBean traceBean = new TraceBean();
traceBean.setTopic(NamespaceUtil.withoutNamespace(context.getMessage().getTopic()));
traceBean.setTags(context.getMessage().getTags());
traceBean.setKeys(context.getMessage().getKeys());
traceBean.setStoreHost(context.getBrokerAddr());
traceBean.setBodyLength(context.getMessage().getBody().length);
traceBean.setMsgType(context.getMsgType());
tuxeContext.getTraceBeans().add(traceBean);
}
傳送訊息之前,先收集訊息的 topic 、tag、key 、儲存 Broker 的 IP 地址、訊息體的長度等基礎資訊,並將訊息軌跡資料儲存在呼叫上下文中。
2、sendMessageAfter 方法
public void sendMessageAfter(SendMessageContext context) {
// ...省略部分程式碼
TraceContext tuxeContext = (TraceContext) context.getMqTraceContext();
TraceBean traceBean = tuxeContext.getTraceBeans().get(0);
int costTime = (int) ((System.currentTimeMillis() - tuxeContext.getTimeStamp()) / tuxeContext.getTraceBeans().size());
tuxeContext.setCostTime(costTime);
if (context.getSendResult().getSendStatus().equals(SendStatus.SEND_OK)) {
tuxeContext.setSuccess(true);
} else {
tuxeContext.setSuccess(false);
}
tuxeContext.setRegionId(context.getSendResult().getRegionId());
traceBean.setMsgId(context.getSendResult().getMsgId());
traceBean.setOffsetMsgId(context.getSendResult().getOffsetMsgId());
traceBean.setStoreTime(tuxeContext.getTimeStamp() + costTime / 2);
localDispatcher.append(tuxeContext);
}
跟蹤物件裡會儲存 costTime
(訊息傳送時間)、success
(是否傳送成功)、regionId
(傳送到 Broker 所在的分割區) 、 msgId
(訊息 ID,全域性唯一)、offsetMsgId
(訊息物理偏移量) ,storeTime
(儲存時間 ) 。
儲存時間並沒有取訊息的實際儲存時間,而是估算出來的:使用者端傳送時間的一般的耗時表示訊息的儲存時間。
最後將跟蹤上下文新增到本地軌跡分發器:
localDispatcher.append(tuxeContext);
下面我們分析下軌跡分發器的原理:
public AsyncTraceDispatcher(String group, Type type, String traceTopicName, RPCHook rpcHook) {
// 省略程式碼 ....
this.traceContextQueue = new ArrayBlockingQueue<TraceContext>(1024);
this.appenderQueue = new ArrayBlockingQueue<Runnable>(queueSize);
if (!UtilAll.isBlank(traceTopicName)) {
this.traceTopicName = traceTopicName;
} else {
this.traceTopicName = TopicValidator.RMQ_SYS_TRACE_TOPIC;
}
this.traceExecutor = new ThreadPoolExecutor(//
10,
20,
1000 * 60,
TimeUnit.MILLISECONDS,
this.appenderQueue,
new ThreadFactoryImpl("MQTraceSendThread_"));
traceProducer = getAndCreateTraceProducer(rpcHook);
}
public void start(String nameSrvAddr, AccessChannel accessChannel) throws MQClientException {
if (isStarted.compareAndSet(false, true)) {
traceProducer.setNamesrvAddr(nameSrvAddr);
traceProducer.setInstanceName(TRACE_INSTANCE_NAME + "_" + nameSrvAddr);
traceProducer.start();
}
this.accessChannel = accessChannel;
this.worker = new Thread(new AsyncRunnable(), "MQ-AsyncTraceDispatcher-Thread-" + dispatcherId);
this.worker.setDaemon(true);
this.worker.start();
this.registerShutDownHook();
}
上面的程式碼展示了分發器的建構函式和啟動方法,建構函式建立了一個傳送訊息的執行緒池 traceExecutor
,啟動 start 後會啟動一個 worker執行緒
。
class AsyncRunnable implements Runnable {
private boolean stopped;
@Override
public void run() {
while (!stopped) {
synchronized (traceContextQueue) {
long endTime = System.currentTimeMillis() + pollingTimeMil;
while (System.currentTimeMillis() < endTime) {
try {
TraceContext traceContext = traceContextQueue.poll(
endTime - System.currentTimeMillis(), TimeUnit.MILLISECONDS
);
if (traceContext != null && !traceContext.getTraceBeans().isEmpty()) {
// get the topic which the trace message will send to
String traceTopicName = this.getTraceTopicName(traceContext.getRegionId());
// get the traceDataSegment which will save this trace message, create if null
TraceDataSegment traceDataSegment = taskQueueByTopic.get(traceTopicName);
if (traceDataSegment == null) {
traceDataSegment = new TraceDataSegment(traceTopicName, traceContext.getRegionId());
taskQueueByTopic.put(traceTopicName, traceDataSegment);
}
// encode traceContext and save it into traceDataSegment
// NOTE if data size in traceDataSegment more than maxMsgSize,
// a AsyncDataSendTask will be created and submitted
TraceTransferBean traceTransferBean = TraceDataEncoder.encoderFromContextBean(traceContext);
traceDataSegment.addTraceTransferBean(traceTransferBean);
}
} catch (InterruptedException ignore) {
log.debug("traceContextQueue#poll exception");
}
}
// NOTE send the data in traceDataSegment which the first TraceTransferBean
// is longer than waitTimeThreshold
sendDataByTimeThreshold();
if (AsyncTraceDispatcher.this.stopped) {
this.stopped = true;
}
}
}
}
worker 啟動後,會從軌跡上下文佇列 traceContextQueue 中不斷的取出軌跡上下文,並將上下文轉換成軌跡資料片段 TraceDataSegment
。
為了提升系統的效能,並不是每一次從佇列中獲取到資料就直接傳送到 MQ ,而是積累到一定程度的臨界點才觸發這個操作,我們可以簡單的理解為批次操作。
這裡面有兩個維度 :
軌跡資料片段的資料大小大於某個資料大小閾值。筆者認為這段 RocketMQ 4.9.4 版本程式碼存疑,因為最新的 5.0 版本做了優化。
if (currentMsgSize >= traceProducer.getMaxMessageSize()) {
List<TraceTransferBean> dataToSend = new ArrayList(traceTransferBeanList);
AsyncDataSendTask asyncDataSendTask = new AsyncDataSendTask(traceTopicName, regionId, dataToSend);
traceExecutor.submit(asyncDataSendTask);
this.clear();
}
當前時間 - 軌跡資料片段的首次儲存時間 是否大於重新整理時間 ,也就是每500毫秒重新整理一次。
private void sendDataByTimeThreshold() {
long now = System.currentTimeMillis();
for (TraceDataSegment taskInfo : taskQueueByTopic.values()) {
if (now - taskInfo.firstBeanAddTime >= waitTimeThresholdMil) {
taskInfo.sendAllData();
}
}
}
軌跡資料儲存的格式如下:
TraceBean bean = ctx.getTraceBeans().get(0);
//append the content of context and traceBean to transferBean's TransData
case Pub: {
sb.append(ctx.getTraceType()).append(TraceConstants.CONTENT_SPLITOR)
.append(ctx.getTimeStamp()).append(TraceConstants.CONTENT_SPLITOR)
.append(ctx.getRegionId()).append(TraceConstants.CONTENT_SPLITOR)
.append(ctx.getGroupName()).append(TraceConstants.CONTENT_SPLITOR)
.append(bean.getTopic()).append(TraceConstants.CONTENT_SPLITOR)
.append(bean.getMsgId()).append(TraceConstants.CONTENT_SPLITOR)
.append(bean.getTags()).append(TraceConstants.CONTENT_SPLITOR)
.append(bean.getKeys()).append(TraceConstants.CONTENT_SPLITOR)
.append(bean.getStoreHost()).append(TraceConstants.CONTENT_SPLITOR)
.append(bean.getBodyLength()).append(TraceConstants.CONTENT_SPLITOR)
.append(ctx.getCostTime()).append(TraceConstants.CONTENT_SPLITOR)
.append(bean.getMsgType().ordinal()).append(TraceConstants.CONTENT_SPLITOR)
.append(bean.getOffsetMsgId()).append(TraceConstants.CONTENT_SPLITOR)
.append(ctx.isSuccess()).append(TraceConstants.FIELD_SPLITOR);
}
break;
下圖展示了事務軌跡訊息資料,每個資料欄位是按照 CONTENT_SPLITOR
分隔。
注意:
分隔符 CONTENT_SPLITOR = (char) 1 它在記憶體中的值是:00000001 , 但是 char i = '1' 它在記憶體中的值是 49 ,即 00110001。
參考資料:
阿里雲檔案:
石臻臻: