題目資訊
s = "HIJKLMNOPQRSTUVWXYZABCDEFGhijklmnopqrstuvwxyzabcdefg0123456789+/" #碼錶
def My_base64_encode(inputs):
bin_str = []
for i in inputs:
x = str(bin(ord(i))).replace('0b', '')
bin_str.append('{:0>8}'.format(x))
#print(bin_str)
outputs = ""
nums = 0
while bin_str:
temp_list = bin_str[:3]
if(len(temp_list) != 3):
nums = 3 - len(temp_list)
while len(temp_list) < 3:
temp_list += ['0' * 8]
temp_str = "".join(temp_list)
#print(temp_str)
temp_str_list = []
for i in range(0,4):
temp_str_list.append(int(temp_str[i*6:(i+1)*6],2))
#print(temp_str_list)
if nums:
temp_str_list = temp_str_list[0:4 - nums]
for i in temp_str_list:
outputs += s[i]
bin_str = bin_str[3:]
outputs += nums * '='
print("Encrypted String:\n%s "%outputs)
print("-------input 'ys' to encode-------")
sr = input("Please input!\n")
if(sr == "ys"):
input_str = input("Please enter a string that needs to be encrypted: \n")
My_base64_encode(input_str)
根據第一行新表base64解碼即可
題目附件
import libnum
p=libnum.generate_prime(1024)
q=libnum.generate_prime(1024)
e=65537
m="NSSCTF{*******************}"
m=libnum.s2n(m)
n=p*q
phi_n=(p-1)*(q-1)
d=libnum.invmod(e,phi_n)
c=pow(m,e,n)
print("p=",p)
print("q=",q)
print ("e=",e)
print ("c=",c)
#p= 122912801126049869009003839542545176400185213365268209105714006257803073428638629824801261702125287814910668428403367391355051987389837804474055637991864563803834741161217607848968821280710324766558457056004037592628178078680121173634128054936108782807954132605887275556228703383455969903056759874047110115433
#q= 120790113700754477830062212762518406876786376726996249661848284428829412089402183812692045970711341815805796005449714738748110749559462448861357011272792817313060401380148108517705435100103533857957024851181447994572972501120774586405811257420853542417275740953525627232008812587423053626515513859653865873671
#e= 65537
#c= 7094224488947659163318199615533819770556597977720767621640224798887506152292861133457571683713587909779712343346370719403811813233693263526316785431883833118583425528830238629831001255198236686372518770451273159769779374149881346761523688131115323441973953523582174059584087249568245044443295176738493785560215046375056269378223045128094953923926250055718405799885041115025529297362914403732661935017257507786348635366480744933193471899621592092711962814949533564454932121056035003021428158830645604347966849572981124877683317022116903132719663958775850982016292384237647664448371811915879714093710876989697939277005
基礎RSA
exp:
import gmpy2
from Crypto.Util.number import long_to_bytes
p = 122912801126049869009003839542545176400185213365268209105714006257803073428638629824801261702125287814910668428403367391355051987389837804474055637991864563803834741161217607848968821280710324766558457056004037592628178078680121173634128054936108782807954132605887275556228703383455969903056759874047110115433
q = 120790113700754477830062212762518406876786376726996249661848284428829412089402183812692045970711341815805796005449714738748110749559462448861357011272792817313060401380148108517705435100103533857957024851181447994572972501120774586405811257420853542417275740953525627232008812587423053626515513859653865873671
c = 7094224488947659163318199615533819770556597977720767621640224798887506152292861133457571683713587909779712343346370719403811813233693263526316785431883833118583425528830238629831001255198236686372518770451273159769779374149881346761523688131115323441973953523582174059584087249568245044443295176738493785560215046375056269378223045128094953923926250055718405799885041115025529297362914403732661935017257507786348635366480744933193471899621592092711962814949533564454932121056035003021428158830645604347966849572981124877683317022116903132719663958775850982016292384237647664448371811915879714093710876989697939277005
phi = (p-1) * (q-1)
e = 65537
n = p * q
d = gmpy2.invert(e, phi)
m = pow(c, d, n)
print('