分散式資料庫 Join 查詢設計與實現淺析

2023-06-09 12:01:16

相對於單例資料庫的查詢操作,分散式資料查詢會有很多技術難題。

本文記錄 Mysql 分庫分表 和 Elasticsearch Join 查詢的實現思路,瞭解分散式場景資料處理的設計方案。
文章從常用的關係型資料庫 MySQL 的分庫分表Join 分析,再到非關係型 ElasticSearch 來分析 Join 實現策略。逐步深入Join 的實現機制。

①Mysql 分庫分表 Join 查詢場景

分庫分表場景下,查詢語句如何分發,資料如何組織。相較於NoSQL 資料庫,Mysql 在SQL 規範的範圍內,相對比較容易適配分散式場景。

基於 sharding-jdbc 中介軟體的方案,瞭解整個設計思路。

sharding-jdbc

  • sharding-jdbc 代理了原始的 datasource, 實現 jdbc 規範來完成分庫分表的分發和組裝,應用層無感知。
  • 執行流程:SQL解析 => 執行器優化 => SQL路由 => SQL改寫 => SQL執行 => 結果歸併 io.shardingsphere.core.executor.ExecutorEngine#execute
  • Join 語句的解析,決定了要分發 SQL 到哪些範例節點上。對應SQL路由。
  • SQL 改寫就是要把原始(邏輯)表名,改為實際分片的表名。
  • 複雜情況下,Join 查詢分發的最多執行的次數 = 資料庫範例 × 表A分片數 × 表B分片數

Code Insight

範例程式碼工程:[email protected]:cluoHeadon/sharding-jdbc-demo.git

/**
 * 執行查詢 SQL 切入點,從這裡可以完整 debug 執行流程
 * @see ShardingPreparedStatement#execute()
 * @see ParsingSQLRouter#route(String, List, SQLStatement) Join 查詢實際涉及哪些表,就是在路由規則裡匹配得出來的。
 */
public boolean execute() throws SQLException {
    try {
        // 根據引數(決定分片)和具體的SQL 來匹配相關的實際 Table。
        Collection<PreparedStatementUnit> preparedStatementUnits = route();
        // 使用執行緒池,分發執行和結果歸併。
        return new PreparedStatementExecutor(getConnection().getShardingContext().getExecutorEngine(), routeResult.getSqlStatement().getType(), preparedStatementUnits).execute();
    } finally {
        JDBCShardingRefreshHandler.build(routeResult, connection).execute();
        clearBatch();
    }
}

SQL 路由策略

啟用 sql 列印,直觀看到實際分發執行的 SQL

# 列印的程式碼,就是在上述route 得出 ExecutionUnits 後,列印的
sharding.jdbc.config.sharding.props.sql.show=true

sharding-jdbc 根據不同的SQL 語句,會有不同的路由策略。我們關注的 Join 查詢,實際相關就是以下兩種策略。

  • StandardRoutingEngine binding-tables 模式
  • ComplexRoutingEngine 最複雜的情況,笛卡爾組合關聯關係
-- 引數不明,不能定位分片的情況
select * from order o inner join order_item oi on o.order_id = oi.order_id 

-- 路由結果
-- Actual SQL: db1 ::: select * from order_1 o inner join order_item_1 oi on o.order_id = oi.order_id 
-- Actual SQL: db1 ::: select * from order_1 o inner join order_item_0 oi on o.order_id = oi.order_id 
-- Actual SQL: db1 ::: select * from order_0 o inner join order_item_1 oi on o.order_id = oi.order_id 
-- Actual SQL: db1 ::: select * from order_0 o inner join order_item_0 oi on o.order_id = oi.order_id 
-- Actual SQL: db0 ::: select * from order_1 o inner join order_item_1 oi on o.order_id = oi.order_id 
-- Actual SQL: db0 ::: select * from order_1 o inner join order_item_0 oi on o.order_id = oi.order_id 
-- Actual SQL: db0 ::: select * from order_0 o inner join order_item_1 oi on o.order_id = oi.order_id 
-- Actual SQL: db0 ::: select * from order_0 o inner join order_item_0 oi on o.order_id = oi.order_id

②Elasticsearch Join 查詢場景

首先,對於 NoSQL 資料庫,要求 Join 查詢,可以考慮是不是使用場景和用法有問題。

然後,不可避免的,有些場景需要這個功能。Join 查詢的實現更貼近SQL 引擎。

基於 elasticsearch-sql 元件的方案,瞭解大概的實現思路。

elasticsearch-sql

  • 這是個elasticsearch 外掛,通過提供http 服務實現類 SQL 查詢的功能,高版本的elasticsearch 已經具備該功能⭐
  • 因為 elasticsearch 沒有 Join 查詢的特性,所以實現 SQL Join 功能,需要提供更加底層的功能,涉及到 Join 演演算法。

Code Insight

原始碼地址:[email protected]:NLPchina/elasticsearch-sql.git

/**
 * Execute the ActionRequest and returns the REST response using the channel.
 * @see ElasticDefaultRestExecutor#execute
 * @see ESJoinQueryActionFactory#createJoinAction Join 演演算法選擇
 */
@Override
public void execute(Client client, Map<String, String> params, QueryAction queryAction, RestChannel channel) throws Exception{
    // sql parse
    SqlElasticRequestBuilder requestBuilder = queryAction.explain();

    // join 查詢
    if(requestBuilder instanceof JoinRequestBuilder){
        // join 演演算法選擇。包括:HashJoinElasticExecutor、NestedLoopsElasticExecutor
        // 如果關聯條件為等值(Condition.OPEAR.EQ),則使用 HashJoinElasticExecutor
        ElasticJoinExecutor executor = ElasticJoinExecutor.createJoinExecutor(client,requestBuilder);
        executor.run();
        executor.sendResponse(channel);
    }
    // 其他型別查詢 ...
}

③More Than Join

Join 演演算法

  • 常用三種 Join 演演算法:Nested Loop Join,Hash Join、 Merge Join
  • MySQL 只支援 NLJ 或其變種,8.0.18 版本後支援 Hash Join
  • NLJ 相當於兩個巢狀迴圈,用第一張表做 Outter Loop,第二張表做 Inner Loop,Outter Loop 的每一條記錄跟 Inner Loop 的記錄作比較,最終符合條件的就將該資料記錄。
  • Hash Join 分為兩個階段; build 構建階段和 probe 探測階段。
  • 可以使用Explain 檢視 MySQL 使用哪種 Join 演演算法。 需要的語法關鍵字: FORMAT=JSON or FORMAT=Tree
EXPLAIN FORMAT=JSON  
SELECT * FROM
    sale_line_info u
    JOIN sale_line_manager o ON u.sale_line_code = o.sale_line_code;
{
    "query_block": {
        "select_id": 1,
        // 使用的join 演演算法: nested_loop
        "nested_loop": [
            // 涉及join 的表以及對應的 key,其他的資訊與常用explain 類似
            {
                "table": {
                    "table_name": "o",
                    "access_type": "ALL"
                }
            },
            {
                "table": {
                    "table_name": "u",
                    "access_type": "ref"
                }
            }
        ]
    }
}

Elasticsearch Nested型別

分析Elasticsearch 業務資料以及使用場景,還有一種選擇是直接儲存關聯資訊的檔案。在 Elasticsearch 中,是以完整檔案形式提供查詢和檢索,徹底避開使用 Join 相關的技術。

這樣就牽扯到關聯是歸屬型別的資料還是公用型別的資料、關聯資料量的大小、關聯資料的更新頻率等。這些都是使用 Nested 型別需要考慮的因素。

更多的使用方法,可以從網上和官網找到,不做贅述。
我們現在有個業務功能正好使用到 Nested型別, 在查詢和優化過程中,解決了非常大的難題。

總結

通過執行原理分析,對於執行流程有了清晰和深入的認知。

對於中介軟體的優化和技術選型更加有目的性,使用上會更加謹慎和小心。

明確的篩選條件,更小的篩選範圍,limit 取值資料,都可以減少計算陳本,提高效能。

參考

作者:京東物流 楊攀

來源:京東雲開發者社群