基於Sentinel自研元件的系統限流、降級、負載保護最佳實踐探索

2023-05-16 12:00:50

作者:京東物流 楊建民

一、Sentinel簡介

Sentinel 以流量為切入點,從流量控制熔斷降級系統負載保護等多個維度保護服務的穩定性。

Sentinel 具有以下特徵:

  • 豐富的應用場景:秒殺(即突發流量控制在系統容量可以承受的範圍)、訊息削峰填谷、叢集流量控制、實時熔斷下游不可用應用等。
  • 完備的實時監控:Sentinel 同時提供實時的監控功能。您可以在控制檯中看到接入應用的單臺機器秒級資料,甚至 500 臺以下規模的叢集的彙總執行情況。
  • 廣泛的開源生態:Sentinel 提供開箱即用的與其它開源框架/庫的整合模組,例如與 Spring Cloud、Apache Dubbo、gRPC、Quarkus 的整合。您只需要引入相應的依賴並進行簡單的設定即可快速地接入 Sentinel。同時 Sentinel 提供 Java/Go/C++ 等多語言的原生實現。
  • 完善的 SPI 擴充套件機制:Sentinel 提供簡單易用、完善的 SPI 擴充套件介面。您可以通過實現擴充套件介面來快速地客製化邏輯。例如客製化規則管理、適配動態資料來源等

有關Sentinel的詳細介紹以及和Hystrix的區別可以自行網上檢索,推薦一篇文章:https://mp.weixin.qq.com/s/Q7Xv8cypQFrrOQhbd9BOXw

本次主要使用了Sentinel的降級、限流、系統負載保護功能

二、Sentinel關鍵技術原始碼解析

無論是限流、降級、負載等控制手段,大致流程如下:

•StatisticSlot 則用於記錄、統計不同維度的 runtime 指標監控資訊

•責任鏈依次觸發後續 slot 的 entry 方法,如 SystemSlot、FlowSlot、DegradeSlot 等的規則校驗;

•當後續的 slot 通過,沒有丟擲 BlockException 異常,說明該資源被成功呼叫,則增加執行執行緒數和通過的請求數等資訊。

關於資料統計,主要會牽扯到 ArrayMetric、BucketLeapArray、MetricBucket、WindowWrap 等類。

專案結構

以下主要分析core包裡的內容

2.1註解入口

2.1.1 Entry、Context、Node

SphU門面類的方法出參都是Entry,Entry可以理解為每次進入資源的一個憑證,如果呼叫SphO.entry()或者SphU.entry()能獲取Entry物件,代表獲取了憑證,沒有被限流,否則丟擲一個BlockException。

Entry中持有本次對資源呼叫的相關資訊:

•createTime:建立該Entry的時間戳。

•curNode:Entry當前是在哪個節點。

•orginNode:Entry的呼叫源節點。

•resourceWrapper:Entry關聯的資源資訊。

Entry是一個抽象類,CtEntry是Entry的實現,CtEntry持有Context和呼叫鏈的資訊

Context的原始碼註釋如下,

This class holds metadata of current invocation


Node的原始碼註釋

Holds real-time statistics for resources


Node中儲存了對資源的實時資料的統計,Sentinel中的限流或者降級等功能就是通過Node中的資料進行判斷的。Node是一個介面,裡面定義了各種操作request、exception、rt、qps、thread的方法。

在細看Node實現時,不難發現LongAddr的使用,關於LongAddr和DoubleAddr都是java8 java.util.concurrent.atomic裡的內容,感興趣的小夥伴可以再深入研究一下,這兩個是高並行下計數功能非常優秀的資料結構,實際應用場景裡需要計數時可以考慮使用。

關於Node的介紹後續還會深入,此處大致先提一下這個概念。

2.2 初始化

2.2.1 Context初始化

在初始化slot責任鏈部分前,還執行了context的初始化,裡面涉及幾個重要概念,需要解釋一下:

可以發現在Context初始化的過程中,會把EntranceNode加入到Root子節點中(實際Root本身是一個特殊的EntranceNode),並把EntranceNode放到contextNameNodeMap中。

之前簡單提到過Node,是用來統計資料用的,不同Node功能如下:

•Node:用於完成資料統計的介面

•StatisticNode:統計節點,是Node介面的實現類,用於完成資料統計

•EntranceNode:入口節點,一個Context會有一個入口節點,用於統計當前Context的總體流量資料

•DefaultNode:預設節點,用於統計一個資源在當前Context中的流量資料

•ClusterNode:叢集節點,用於統計一個資源在所有Context中的總體流量資料

protected static Context trueEnter(String name, String origin) {
        Context context = contextHolder.get();
        if (context == null) {
            Map<String, DefaultNode> localCacheNameMap = contextNameNodeMap;
            DefaultNode node = localCacheNameMap.get(name);
            if (node == null) {
                if (localCacheNameMap.size() > Constants.MAX_CONTEXT_NAME_SIZE) {
                    setNullContext();
                    return NULL_CONTEXT;
                } else {
                    LOCK.lock();
                    try {
                        node = contextNameNodeMap.get(name);
                        if (node == null) {
                            if (contextNameNodeMap.size() > Constants.MAX_CONTEXT_NAME_SIZE) {
                                setNullContext();
                                return NULL_CONTEXT;
                            } else {
                                node = new EntranceNode(new StringResourceWrapper(name, EntryType.IN), null);
                                // Add entrance node.
                                Constants.ROOT.addChild(node);

                                Map<String, DefaultNode> newMap = new HashMap<>(contextNameNodeMap.size() + 1);
                                newMap.putAll(contextNameNodeMap);
                                newMap.put(name, node);
                                contextNameNodeMap = newMap;
                            }
                        }
                    } finally {
                        LOCK.unlock();
                    }
                }
            }
            context = new Context(node, name);
            context.setOrigin(origin);
            contextHolder.set(context);
        }

        return context;
    }


2.2.2 通過SpiLoader預設初始化8個slot

每個slot的主要職責如下:

•NodeSelectorSlot 負責收集資源的路徑,並將這些資源的呼叫路徑,以樹狀結構儲存起來,用於根據呼叫路徑來限流降級

•ClusterBuilderSlot 則用於儲存資源的統計資訊以及呼叫者資訊,例如該資源的 RT, QPS, thread count 等等,這些資訊將用作為多維度限流,降級的依據

•StatisticSlot 則用於記錄、統計不同緯度的 runtime 指標監控資訊

•FlowSlot 則用於根據預設的限流規則以及前面 slot 統計的狀態,來進行流量控制

•AuthoritySlot 則根據設定的黑白名單和呼叫來源資訊,來做黑白名單控制

•DegradeSlot 則通過統計資訊以及預設的規則,來做熔斷降級

•SystemSlot 則通過系統的狀態,例如 叢集QPS、執行緒數、RT、負載 等,來控制總的入口流量

2.3 StatisticSlot

2.3.1 Node

深入看一下Node,因為統計資訊都在裡面,後面不論是限流、熔斷、負載保護等都是結合規則+統計資訊判斷是否要執行

從Node的原始碼註釋看,它會持有資源維度的實時統計資料,以下是介面裡的方法定義,可以看到totalRequest、totalPass、totalSuccess、blockRequest、totalException、passQps等很多request、qps、thread的相關方法:

/**
 * Holds real-time statistics for resources.
 *
 * @author qinan.qn
 * @author leyou
 * @author Eric Zhao
 */
public interface Node extends OccupySupport, DebugSupport {
    long totalRequest();
    long totalPass();
    long totalSuccess();
    long blockRequest();
    long totalException();
    double passQps();
    double blockQps();
    double totalQps();
    double successQps();
    ……
}


2.3.2 StatisticNode

我們先從最基礎的StatisticNode開始看,原始碼給出的定位是:

The statistic node keep three kinds of real-time statistics metrics:
metrics in second level ({@code rollingCounterInSecond})
metrics in minute level ({@code rollingCounterInMinute})
thread count


StatisticNode只有四個屬性,除了之前提到過的LongAddr型別的curThreadNum外,還有兩個屬性是Metric物件,通過入參已經屬性命名可以看出,一個用於秒級,一個用於分鐘級統計。接下來我們就要看看Metric

// StatisticNode持有兩個Metric,一個秒級一個分鐘級,由入參可知,秒級統計劃分了兩個時間視窗,視窗程度是500ms
private transient volatile Metric rollingCounterInSecond = new ArrayMetric(SampleCountProperty.SAMPLE_COUNT,
    IntervalProperty.INTERVAL);

// 分鐘級統計劃分了60個時間視窗,視窗長度是1000ms
private transient Metric rollingCounterInMinute = new ArrayMetric(60, 60 * 1000, false);

/**
 * The counter for thread count.
 */
private LongAdder curThreadNum = new LongAdder();

/**
 * The last timestamp when metrics were fetched.
 */
private long lastFetchTime = -1;


ArrayMetric只有一個屬性LeapArray,其餘都是用於統計的方法,LeapArray是sentinel中統計最基本的資料結構,這裡有必要詳細看一下,總體就是根據timeMillis去獲取一個bucket,分為:沒有建立、有直接返回、被廢棄後的reset三種場景。

//以分鐘級的統計屬性為例,看一下時間視窗初始化過程
private transient Metric rollingCounterInMinute = new ArrayMetric(60, 60 * 1000, false);


public LeapArray(int sampleCount, int intervalInMs) {
        AssertUtil.isTrue(sampleCount > 0, "bucket count is invalid: " + sampleCount);
        AssertUtil.isTrue(intervalInMs > 0, "total time interval of the sliding window should be positive");
        AssertUtil.isTrue(intervalInMs % sampleCount == 0, "time span needs to be evenly divided");
        // windowLengthInMs = 60*1000 / 60 = 1000 滑動視窗時間長度,可見sentinel預設將單位時間分為了60個滑動視窗進行資料統計
        this.windowLengthInMs = intervalInMs / sampleCount;
        // 60*1000
        this.intervalInMs = intervalInMs;
        // 60
        this.intervalInSecond = intervalInMs / 1000.0;
        // 60
        this.sampleCount = sampleCount;
        // 陣列長度60
        this.array = new AtomicReferenceArray<>(sampleCount);
    }

/**
     * Get bucket item at provided timestamp.
     *
     * @param timeMillis a valid timestamp in milliseconds
     * @return current bucket item at provided timestamp if the time is valid; null if time is invalid
     */
    public WindowWrap<T> currentWindow(long timeMillis) {
        if (timeMillis < 0) {
            return null;
        }
        // 根據當前時間戳算一個陣列索引
        int idx = calculateTimeIdx(timeMillis);
        // Calculate current bucket start time.
        // timeMillis % 1000
        long windowStart = calculateWindowStart(timeMillis);

        /*
         * Get bucket item at given time from the array.
         *
         * (1) Bucket is absent, then just create a new bucket and CAS update to circular array.
         * (2) Bucket is up-to-date, then just return the bucket.
         * (3) Bucket is deprecated, then reset current bucket.
         */
        while (true) {
            WindowWrap<T> old = array.get(idx);
            if (old == null) {
                /*
                 *     B0       B1      B2    NULL      B4
                 * ||_______|_______|_______|_______|_______||___
                 * 200     400     600     800     1000    1200  timestamp
                 *                             ^
                 *                          time=888
                 *            bucket is empty, so create new and update
                 *
                 * If the old bucket is absent, then we create a new bucket at {@code windowStart},
                 * then try to update circular array via a CAS operation. Only one thread can
                 * succeed to update, while other threads yield its time slice.
                 */
                // newEmptyBucket 方法重寫,秒級和分鐘級統計物件實現不同
                WindowWrap<T> window = new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));
                if (array.compareAndSet(idx, null, window)) {
                    // Successfully updated, return the created bucket.
                    return window;
                } else {
                    // Contention failed, the thread will yield its time slice to wait for bucket available.
                    Thread.yield();
                }
            } else if (windowStart == old.windowStart()) {
                /*
                 *     B0       B1      B2     B3      B4
                 * ||_______|_______|_______|_______|_______||___
                 * 200     400     600     800     1000    1200  timestamp
                 *                             ^
                 *                          time=888
                 *            startTime of Bucket 3: 800, so it's up-to-date
                 *
                 * If current {@code windowStart} is equal to the start timestamp of old bucket,
                 * that means the time is within the bucket, so directly return the bucket.
                 */
                return old;
            } else if (windowStart > old.windowStart()) {
                /*
                 *   (old)
                 *             B0       B1      B2    NULL      B4
                 * |_______||_______|_______|_______|_______|_______||___
                 * ...    1200     1400    1600    1800    2000    2200  timestamp
                 *                              ^
                 *                           time=1676
                 *          startTime of Bucket 2: 400, deprecated, should be reset
                 *
                 * If the start timestamp of old bucket is behind provided time, that means
                 * the bucket is deprecated. We have to reset the bucket to current {@code windowStart}.
                 * Note that the reset and clean-up operations are hard to be atomic,
                 * so we need a update lock to guarantee the correctness of bucket update.
                 *
                 * The update lock is conditional (tiny scope) and will take effect only when
                 * bucket is deprecated, so in most cases it won't lead to performance loss.
                 */
                if (updateLock.tryLock()) {
                    try {
                        // Successfully get the update lock, now we reset the bucket.
                        return resetWindowTo(old, windowStart);
                    } finally {
                        updateLock.unlock();
                    }
                } else {
                    // Contention failed, the thread will yield its time slice to wait for bucket available.
                    Thread.yield();
                }
            } else if (windowStart < old.windowStart()) {
                // Should not go through here, as the provided time is already behind.
                return new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));
            }
        }
    }
// 持有一個時間視窗物件的資料,會根據當前時間戳除以時間視窗長度然後雜湊到陣列中
private int calculateTimeIdx(/*@Valid*/ long timeMillis) {
        long timeId = timeMillis / windowLengthInMs;
        // Calculate current index so we can map the timestamp to the leap array.
        return (int)(timeId % array.length());
    }


WindowWrap持有了windowLengthInMs, windowStart和LeapArray(分鐘統計實現是BucketLeapArray,秒級統計實現是OccupiableBucketLeapArray),對於分鐘級別的統計,MetricBucket維護了一個longAddr陣列和一個設定的minRT

/**
 * The fundamental data structure for metric statistics in a time span.
 *
 * @author jialiang.linjl
 * @author Eric Zhao
 * @see LeapArray
 */
public class BucketLeapArray extends LeapArray<MetricBucket> {

    public BucketLeapArray(int sampleCount, int intervalInMs) {
        super(sampleCount, intervalInMs);
    }

    @Override
    public MetricBucket newEmptyBucket(long time) {
        return new MetricBucket();
    }

    @Override
    protected WindowWrap<MetricBucket> resetWindowTo(WindowWrap<MetricBucket> w, long startTime) {
        // Update the start time and reset value.
        w.resetTo(startTime);
        w.value().reset();
        return w;
    }
}


對於秒級統計,QPS=20場景下,如何準確統計的問題,此處用到了另外一個LeapArry實現FutureBucketLeapArray,至於秒級統計如何保證沒有統計誤差,讀者可以再研究一下FutureBucketLeapArray的上下文就好。

2.4 FlowSlot

2.4.1 常見限流演演算法

介紹sentinel限流實現前,先介紹一下常見限流演演算法,基本分為三種:計數器、漏斗、令牌桶。

計數器演演算法

顧名思義,計數器演演算法就是統計某個時間段內的請求,每單位時間加1,然後與設定的限流值(最大QPS)進行比較,如果超出則觸發限流。但是這種演演算法不能做到「平滑限流」,以1s為單位時間,100QPS為限流值為例,如下圖,會出現某時段超出限流值的情況

因此在單純計數器演演算法上,又出現了滑動視窗計數器演演算法,我們將統計時間細分,比如將1s統計時長分為5個時間視窗,通過捲動統計所有時間視窗的QPS作為系統實際的QPS的方式,就能解決上述臨界統計問題,後續我們看sentinel原始碼時也能看到類似操作。

漏斗演演算法

不論流量有多大都會先到漏桶中,然後以均勻的速度流出。如何在程式碼中實現這個勻速呢?比如我們想讓勻速為100q/s,那麼我們可以得到每流出一個流量需要消耗10ms,類似一個佇列,每隔10ms從佇列頭部取出流量進行放行,而我們的佇列也就是漏桶,當流量大於佇列的長度的時候,我們就可以拒絕超出的部分。

漏斗演演算法同樣的也有一定的缺點:無法應對突發流量。比如一瞬間來了100個請求,在漏桶演演算法中只能一個一個的過去,當最後一個請求流出的時候時間已經過了一秒了,所以漏斗演演算法比較適合請求到達比較均勻,需要嚴格控制請求速率的場景。

令牌桶演演算法

令牌桶演演算法和漏斗演演算法比較類似,區別是令牌桶存放的是令牌數量不是請求數量,令牌桶可以根據自身需求多樣性得管理令牌的生產和消耗,可以解決突發流量的問題。

2.4.2 單機限流模式

接下來我們看一下Sentinel中的限流實現,相比上述基本限流演演算法,Sentinel限流的第一個特性就是引入「資源」的概念,可以細粒度多樣性的支援特定資源、關聯資源、指定鏈路的限流。

FlowSlot的主要邏輯都在FlowRuleChecker裡,介紹之前,我們先看一下Sentinel關於規則的模型描述,下圖分別是限流、存取控制規則、系統保護規則(Linux負載)、降級規則

    /**
     * 流量控制兩種模式 
     *   0: thread count(當呼叫該api的執行緒數達到閾值的時候,進行限流)
     *   1: QPS(當呼叫該api的QPS達到閾值的時候,進行限流)
     */
    private int grade = RuleConstant.FLOW_GRADE_QPS;

    /**
     * 流量控制閾值,值含義與grade有關
     */
    private double count;

    /**
     * 呼叫關係限流策略(可以支援關聯資源或指定鏈路的多樣性限流需求)
     *  直接(api 達到限流條件時,直接限流)
     *  關聯(當關聯的資源達到限流閾值時,就限流自己)
     *  鏈路(只記錄指定鏈路上的流量)
     * {@link RuleConstant#STRATEGY_DIRECT} for direct flow control (by origin);
     * {@link RuleConstant#STRATEGY_RELATE} for relevant flow control (with relevant resource);
     * {@link RuleConstant#STRATEGY_CHAIN} for chain flow control (by entrance resource).
     */
    private int strategy = RuleConstant.STRATEGY_DIRECT;

    /**
     * Reference resource in flow control with relevant resource or context.
     */
    private String refResource;

    /**
     * 流控效果:
     * 0. default(reject directly),直接拒絕,拋異常FlowException
     * 1. warm up, 慢啟動模式(根據coldFactor(冷載入因子,預設3)的值,從閾值/coldFactor,經過預熱時長,才達到設定的QPS閾值)
     * 2. rate limiter  排隊等待
     * 3. warm up + rate limiter
     */
    private int controlBehavior = RuleConstant.CONTROL_BEHAVIOR_DEFAULT;

    private int warmUpPeriodSec = 10;

    /**
     * Max queueing time in rate limiter behavior.
     */
    private int maxQueueingTimeMs = 500;

    /**
    *  是否叢集限流,預設為否
    */
    private boolean clusterMode;
    /**
     * Flow rule config for cluster mode.
     */
    private ClusterFlowConfig clusterConfig;

    /**
     * The traffic shaping (throttling) controller.
     */
    private TrafficShapingController controller;


接著我們繼續分析FlowRuleChecker

canPassCheck第一步會好看limitApp,這個是結合存取授許可權制規則使用的,預設是所有。

private static boolean passLocalCheck(FlowRule rule, Context context, DefaultNode node, int acquireCount,
                                          boolean prioritized) {
        // 根據策略選擇Node來進行統計(可以是本身Node、關聯的Node、指定的鏈路)
        Node selectedNode = selectNodeByRequesterAndStrategy(rule, context, node);
        if (selectedNode == null) {
            return true;
        }

        return rule.getRater().canPass(selectedNode, acquireCount, prioritized);
    }


static Node selectNodeByRequesterAndStrategy(/*@NonNull*/ FlowRule rule, Context context, DefaultNode node) {
        // limitApp是存取控制使用的,預設是default,不限制來源
        String limitApp = rule.getLimitApp();
        // 拿到限流策略
        int strategy = rule.getStrategy();
        String origin = context.getOrigin();
        // 基於呼叫來源做鑑權
        if (limitApp.equals(origin) && filterOrigin(origin)) {
            if (strategy == RuleConstant.STRATEGY_DIRECT) {
                // Matches limit origin, return origin statistic node.
                return context.getOriginNode();
            }
            // 
            return selectReferenceNode(rule, context, node);
        } else if (RuleConstant.LIMIT_APP_DEFAULT.equals(limitApp)) {
            if (strategy == RuleConstant.STRATEGY_DIRECT) {
                // Return the cluster node.
                return node.getClusterNode();
            }

            return selectReferenceNode(rule, context, node);
        } else if (RuleConstant.LIMIT_APP_OTHER.equals(limitApp)
            && FlowRuleManager.isOtherOrigin(origin, rule.getResource())) {
            if (strategy == RuleConstant.STRATEGY_DIRECT) {
                return context.getOriginNode();
            }

            return selectReferenceNode(rule, context, node);
        }

        return null;
    }

static Node selectReferenceNode(FlowRule rule, Context context, DefaultNode node) {
        String refResource = rule.getRefResource();
        int strategy = rule.getStrategy();

        if (StringUtil.isEmpty(refResource)) {
            return null;
        }

        if (strategy == RuleConstant.STRATEGY_RELATE) {
            return ClusterBuilderSlot.getClusterNode(refResource);
        }

        if (strategy == RuleConstant.STRATEGY_CHAIN) {
            if (!refResource.equals(context.getName())) {
                return null;
            }
            return node;
        }
        // No node.
        return null;
    }

// 此程式碼是load限流規則時根據規則初始化流量整形控制器的邏輯,rule.getRater()返回TrafficShapingController
private static TrafficShapingController generateRater(/*@Valid*/ FlowRule rule) {
        if (rule.getGrade() == RuleConstant.FLOW_GRADE_QPS) {
            switch (rule.getControlBehavior()) {
                // 預熱模式返回WarmUpController
                case RuleConstant.CONTROL_BEHAVIOR_WARM_UP:
                    return new WarmUpController(rule.getCount(), rule.getWarmUpPeriodSec(),
                            ColdFactorProperty.coldFactor);
                // 排隊模式返回ThrottlingController
                case RuleConstant.CONTROL_BEHAVIOR_RATE_LIMITER:
                    return new ThrottlingController(rule.getMaxQueueingTimeMs(), rule.getCount());
                // 預熱+排隊模式返回WarmUpRateLimiterController
                case RuleConstant.CONTROL_BEHAVIOR_WARM_UP_RATE_LIMITER:
                    return new WarmUpRateLimiterController(rule.getCount(), rule.getWarmUpPeriodSec(),
                            rule.getMaxQueueingTimeMs(), ColdFactorProperty.coldFactor);
                case RuleConstant.CONTROL_BEHAVIOR_DEFAULT:
                default:
                    // Default mode or unknown mode: default traffic shaping controller (fast-reject).
            }
        }
        // 預設是DefaultController
        return new DefaultController(rule.getCount(), rule.getGrade());
    }


Sentinel單機限流演演算法

上面我們看到根據限流規則controlBehavior屬性(流控效果),會初始化以下實現:

•DefaultController:是一個非常典型的滑動視窗計數器演演算法實現,將當前統計的qps和請求進來的qps進行求和,小於限流值則通過,大於則計算一個等待時間,稍後再試

•ThrottlingController:是漏斗演演算法的實現,實現思路已經在原始碼片段中加了備註

•WarmUpController:實現參考了Guava的帶預熱的RateLimiter,區別是Guava側重於請求間隔,類似前面提到的令牌桶,而Sentinel更關注於請求數,和令牌桶演演算法有點類似

•WarmUpRateLimiterController:低水位使用預熱演演算法,高水位使用滑動視窗計數器演演算法排隊。

DefaultController

    @Override
    public boolean canPass(Node node, int acquireCount, boolean prioritized) {
        int curCount = avgUsedTokens(node);
        if (curCount + acquireCount > count) {
            if (prioritized && grade == RuleConstant.FLOW_GRADE_QPS) {
                long currentTime;
                long waitInMs;
                currentTime = TimeUtil.currentTimeMillis();
                waitInMs = node.tryOccupyNext(currentTime, acquireCount, count);
                if (waitInMs < OccupyTimeoutProperty.getOccupyTimeout()) {
                    node.addWaitingRequest(currentTime + waitInMs, acquireCount);
                    node.addOccupiedPass(acquireCount);
                    sleep(waitInMs);

                    // PriorityWaitException indicates that the request will pass after waiting for {@link @waitInMs}.
                    throw new PriorityWaitException(waitInMs);
                }
            }
            return false;
        }
        return true;
    }


ThrottlingController

 public ThrottlingController(int queueingTimeoutMs, double maxCountPerStat) {
        this(queueingTimeoutMs, maxCountPerStat, 1000);
    }

    public ThrottlingController(int queueingTimeoutMs, double maxCountPerStat, int statDurationMs) {
        AssertUtil.assertTrue(statDurationMs > 0, "statDurationMs should be positive");
        AssertUtil.assertTrue(maxCountPerStat >= 0, "maxCountPerStat should be >= 0");
        AssertUtil.assertTrue(queueingTimeoutMs >= 0, "queueingTimeoutMs should be >= 0");
        this.maxQueueingTimeMs = queueingTimeoutMs;
        this.count = maxCountPerStat;
        this.statDurationMs = statDurationMs;
        // Use nanoSeconds when durationMs%count != 0 or count/durationMs> 1 (to be accurate)
        // 可見設定限流值count大於1000時useNanoSeconds會是true否則是false
        if (maxCountPerStat > 0) {
            this.useNanoSeconds = statDurationMs % Math.round(maxCountPerStat) != 0 || maxCountPerStat / statDurationMs > 1;
        } else {
            this.useNanoSeconds = false;
        }
    }

    @Override
    public boolean canPass(Node node, int acquireCount) {
        return canPass(node, acquireCount, false);
    }

    private boolean checkPassUsingNanoSeconds(int acquireCount, double maxCountPerStat) {
        final long maxQueueingTimeNs = maxQueueingTimeMs * MS_TO_NS_OFFSET;
        long currentTime = System.nanoTime();
        // Calculate the interval between every two requests.
        final long costTimeNs = Math.round(1.0d * MS_TO_NS_OFFSET * statDurationMs * acquireCount / maxCountPerStat);

        // Expected pass time of this request.
        long expectedTime = costTimeNs + latestPassedTime.get();

        if (expectedTime <= currentTime) {
            // Contention may exist here, but it's okay.
            latestPassedTime.set(currentTime);
            return true;
        } else {
            final long curNanos = System.nanoTime();
            // Calculate the time to wait.
            long waitTime = costTimeNs + latestPassedTime.get() - curNanos;
            if (waitTime > maxQueueingTimeNs) {
                return false;
            }

            long oldTime = latestPassedTime.addAndGet(costTimeNs);
            waitTime = oldTime - curNanos;
            if (waitTime > maxQueueingTimeNs) {
                latestPassedTime.addAndGet(-costTimeNs);
                return false;
            }
            // in race condition waitTime may <= 0
            if (waitTime > 0) {
                sleepNanos(waitTime);
            }
            return true;
        }
    }
    
    // 漏斗演演算法具體實現
    private boolean checkPassUsingCachedMs(int acquireCount, double maxCountPerStat) {
        long currentTime = TimeUtil.currentTimeMillis();
        // 計算兩次請求的間隔(分為秒級和納秒級)
        long costTime = Math.round(1.0d * statDurationMs * acquireCount / maxCountPerStat);

        // 請求的期望的時間
        long expectedTime = costTime + latestPassedTime.get();

        if (expectedTime <= currentTime) {
            // latestPassedTime是AtomicLong型別,支援volatile語意
            latestPassedTime.set(currentTime);
            return true;
        } else {
            // 計算等待時間
            long waitTime = costTime + latestPassedTime.get() - TimeUtil.currentTimeMillis();
            // 如果大於最大排隊時間,則觸發限流
            if (waitTime > maxQueueingTimeMs) {
                return false;
            }
            
            long oldTime = latestPassedTime.addAndGet(costTime);
            waitTime = oldTime - TimeUtil.currentTimeMillis();
            if (waitTime > maxQueueingTimeMs) {
                latestPassedTime.addAndGet(-costTime);
                return false;
            }
            // in race condition waitTime may <= 0
            if (waitTime > 0) {
                sleepMs(waitTime);
            }
            return true;
        }
    }

    @Override
    public boolean canPass(Node node, int acquireCount, boolean prioritized) {
        // Pass when acquire count is less or equal than 0.
        if (acquireCount <= 0) {
            return true;
        }
        // Reject when count is less or equal than 0.
        // Otherwise, the costTime will be max of long and waitTime will overflow in some cases.
        if (count <= 0) {
            return false;
        }
        if (useNanoSeconds) {
            return checkPassUsingNanoSeconds(acquireCount, this.count);
        } else {
            return checkPassUsingCachedMs(acquireCount, this.count);
        }
    }

    private void sleepMs(long ms) {
        try {
            Thread.sleep(ms);
        } catch (InterruptedException e) {
        }
    }

    private void sleepNanos(long ns) {
        LockSupport.parkNanos(ns);
    }


long costTime = Math.round(1.0d * statDurationMs * acquireCount / maxCountPerStat);


由上述計算兩次請求間隔的公式我們可以發現,當maxCountPerStat(規則設定的限流值QPS)超過1000後,就無法準確計算出勻速排隊模式下的請求間隔時長,因此對應前面介紹的,當規則設定限流值超過1000QPS後,會採用checkPassUsingNanoSeconds,小於1000QPS會採用checkPassUsingCachedMs,對比一下checkPassUsingNanoSeconds和checkPassUsingCachedMs,可以發現主體思路沒變,只是統計維度從毫秒換算成了納秒,因此只看checkPassUsingCachedMs實現就可以

WarmUpController

 
@Override
    public boolean canPass(Node node, int acquireCount, boolean prioritized) {
        long passQps = (long) node.passQps();

        long previousQps = (long) node.previousPassQps();
        syncToken(previousQps);

        // 開始計算它的斜率
        // 如果進入了警戒線,開始調整他的qps
        long restToken = storedTokens.get();
        if (restToken >= warningToken) {
            long aboveToken = restToken - warningToken;
            // 消耗的速度要比warning快,但是要比慢
            // current interval = restToken*slope+1/count
            double warningQps = Math.nextUp(1.0 / (aboveToken * slope + 1.0 / count));
            if (passQps + acquireCount <= warningQps) {
                return true;
            }
        } else {
            if (passQps + acquireCount <= count) {
                return true;
            }
        }

        return false;
    }

protected void syncToken(long passQps) {
        long currentTime = TimeUtil.currentTimeMillis();
        currentTime = currentTime - currentTime % 1000;
        long oldLastFillTime = lastFilledTime.get();
        if (currentTime <= oldLastFillTime) {
            return;
        }

        long oldValue = storedTokens.get();
        long newValue = coolDownTokens(currentTime, passQps);

        if (storedTokens.compareAndSet(oldValue, newValue)) {
            long currentValue = storedTokens.addAndGet(0 - passQps);
            if (currentValue < 0) {
                storedTokens.set(0L);
            }
            lastFilledTime.set(currentTime);
        }

    }

private long coolDownTokens(long currentTime, long passQps) {
        long oldValue = storedTokens.get();
        long newValue = oldValue;

        // 新增令牌的判斷前提條件:
        // 當令牌的消耗程度遠遠低於警戒線的時候
        if (oldValue < warningToken) {
            newValue = (long)(oldValue + (currentTime - lastFilledTime.get()) * count / 1000);
        } else if (oldValue > warningToken) {
            if (passQps < (int)count / coldFactor) {
                newValue = (long)(oldValue + (currentTime - lastFilledTime.get()) * count / 1000);
            }
        }
        return Math.min(newValue, maxToken);
    }


2.4.3 叢集限流

passClusterCheck方法(因為clusterService找不到會降級到非叢集限流)

private static boolean passClusterCheck(FlowRule rule, Context context, DefaultNode node, int acquireCount,
                                            boolean prioritized) {
        try {
            // 獲取當前節點是Token Client還是Token Server
            TokenService clusterService = pickClusterService();
            if (clusterService == null) {
                return fallbackToLocalOrPass(rule, context, node, acquireCount, prioritized);
            }
            long flowId = rule.getClusterConfig().getFlowId();
            // 根據獲取的flowId通過TokenService進行申請token。從上面可知,它可能是TokenClient呼叫的,也可能是ToeknServer呼叫的。分別對應的類是DefaultClusterTokenClient和DefaultTokenService
            TokenResult result = clusterService.requestToken(flowId, acquireCount, prioritized);
            return applyTokenResult(result, rule, context, node, acquireCount, prioritized);
            // If client is absent, then fallback to local mode.
        } catch (Throwable ex) {
            RecordLog.warn("[FlowRuleChecker] Request cluster token unexpected failed", ex);
        }
        // Fallback to local flow control when token client or server for this rule is not available.
        // If fallback is not enabled, then directly pass.
        return fallbackToLocalOrPass(rule, context, node, acquireCount, prioritized);
    }

//獲取當前節點是Token Client還是Token Server。
//1) 如果當前節點的角色是Client,返回的TokenService為DefaultClusterTokenClient;
//2)如果當前節點的角色是Server,則預設返回的TokenService為DefaultTokenService。
private static TokenService pickClusterService() {
        if (ClusterStateManager.isClient()) {
            return TokenClientProvider.getClient();
        }
        if (ClusterStateManager.isServer()) {
            return EmbeddedClusterTokenServerProvider.getServer();
        }
        return null;
    }


叢集限流模式

Sentinel 叢集限流伺服器端有兩種啟動方式:

•嵌入模式(Embedded)適合應用級別的限流,部署簡單,但對應用效能有影響

•獨立模式(Alone)適合全域性限流,需要獨立部署

考慮到文章篇幅,叢集限流有機會再展開詳細介紹。

叢集限流模式降級

private static boolean passClusterCheck(FlowRule rule, Context context, DefaultNode node, int acquireCount,
                                            boolean prioritized) {
        try {
            TokenService clusterService = pickClusterService();
            if (clusterService == null) {
                return fallbackToLocalOrPass(rule, context, node, acquireCount, prioritized);
            }
            long flowId = rule.getClusterConfig().getFlowId();
            TokenResult result = clusterService.requestToken(flowId, acquireCount, prioritized);
            return applyTokenResult(result, rule, context, node, acquireCount, prioritized);
            // If client is absent, then fallback to local mode.
        } catch (Throwable ex) {
            RecordLog.warn("[FlowRuleChecker] Request cluster token unexpected failed", ex);
        }
        // Fallback to local flow control when token client or server for this rule is not available.
        // If fallback is not enabled, then directly pass.
        // 可以看到如果叢集限流有異常,會降級到單機限流模式,如果設定不允許降級,那麼直接會跳過此次校驗
        return fallbackToLocalOrPass(rule, context, node, acquireCount, prioritized);
    }


2.5 DegradeSlot

CircuitBreaker

大神對斷路器的解釋:https://martinfowler.com/bliki/CircuitBreaker.html

首先就看到了根據資源名稱獲取斷路器列表,Sentinel的斷路器有兩個實現:RT模式使用ResponseTimeCircuitBreaker、異常模式使用ExceptionCircuitBreaker

public interface CircuitBreaker {

    /**
     * Get the associated circuit breaking rule.
     *
     * @return associated circuit breaking rule
     */
    DegradeRule getRule();

    /**
     * Acquires permission of an invocation only if it is available at the time of invoking.
     *
     * @param context context of current invocation
     * @return {@code true} if permission was acquired and {@code false} otherwise
     */
    boolean tryPass(Context context);

    /**
     * Get current state of the circuit breaker.
     *
     * @return current state of the circuit breaker
     */
    State currentState();

    /**
     * <p>Record a completed request with the context and handle state transformation of the circuit breaker.</p>
     * <p>Called when a <strong>passed</strong> invocation finished.</p>
     *
     * @param context context of current invocation
     */
    void onRequestComplete(Context context);

    /**
     * Circuit breaker state.
     */
    enum State {
        /**
         * In {@code OPEN} state, all requests will be rejected until the next recovery time point.
         */
        OPEN,
        /**
         * In {@code HALF_OPEN} state, the circuit breaker will allow a "probe" invocation.
         * If the invocation is abnormal according to the strategy (e.g. it's slow), the circuit breaker
         * will re-transform to the {@code OPEN} state and wait for the next recovery time point;
         * otherwise the resource will be regarded as "recovered" and the circuit breaker
         * will cease cutting off requests and transform to {@code CLOSED} state.
         */
        HALF_OPEN,
        /**
         * In {@code CLOSED} state, all requests are permitted. When current metric value exceeds the threshold,
         * the circuit breaker will transform to {@code OPEN} state.
         */
        CLOSED
    }
}


以ExceptionCircuitBreaker為例看一下具體實現

public class ExceptionCircuitBreaker extends AbstractCircuitBreaker {
    
    // 異常模式有兩種,異常率和異常數
    private final int strategy;
    // 最小請求數
    private final int minRequestAmount;
    // 閾值
    private final double threshold;
    
    // LeapArray是sentinel統計資料非常重要的一個結構,主要封裝了時間視窗相關的操作
    private final LeapArray<SimpleErrorCounter> stat;

    public ExceptionCircuitBreaker(DegradeRule rule) {
        this(rule, new SimpleErrorCounterLeapArray(1, rule.getStatIntervalMs()));
    }

    ExceptionCircuitBreaker(DegradeRule rule, LeapArray<SimpleErrorCounter> stat) {
        super(rule);
        this.strategy = rule.getGrade();
        boolean modeOk = strategy == DEGRADE_GRADE_EXCEPTION_RATIO || strategy == DEGRADE_GRADE_EXCEPTION_COUNT;
        AssertUtil.isTrue(modeOk, "rule strategy should be error-ratio or error-count");
        AssertUtil.notNull(stat, "stat cannot be null");
        this.minRequestAmount = rule.getMinRequestAmount();
        this.threshold = rule.getCount();
        this.stat = stat;
    }

    @Override
    protected void resetStat() {
        // Reset current bucket (bucket count = 1).
        stat.currentWindow().value().reset();
    }

    
    @Override
    public void onRequestComplete(Context context) {
        Entry entry = context.getCurEntry();
        if (entry == null) {
            return;
        }
        Throwable error = entry.getError();
        SimpleErrorCounter counter = stat.currentWindow().value();
        if (error != null) {
            counter.getErrorCount().add(1);
        }
        counter.getTotalCount().add(1);

        handleStateChangeWhenThresholdExceeded(error);
    }

    private void handleStateChangeWhenThresholdExceeded(Throwable error) {
        if (currentState.get() == State.OPEN) {
            return;
        }
        
        if (currentState.get() == State.HALF_OPEN) {
            // In detecting request
            if (error == null) {
                fromHalfOpenToClose();
            } else {
                fromHalfOpenToOpen(1.0d);
            }
            return;
        }
        
        List<SimpleErrorCounter> counters = stat.values();
        long errCount = 0;
        long totalCount = 0;
        for (SimpleErrorCounter counter : counters) {
            
 += counter.errorCount.sum();
            totalCount += counter.totalCount.sum();
        }
        if (totalCount < minRequestAmount) {
            return;
        }
        double curCount = errCount;
        if (strategy == DEGRADE_GRADE_EXCEPTION_RATIO) {
            // Use errorRatio
            curCount = errCount * 1.0d / totalCount;
        }
        if (curCount > threshold) {
            transformToOpen(curCount);
        }
    }

    static class SimpleErrorCounter {
        private LongAdder errorCount;
        private LongAdder totalCount;

        public SimpleErrorCounter() {
            this.errorCount = new LongAdder();
            this.totalCount = new LongAdder();
        }

        public LongAdder getErrorCount() {
            return errorCount;
        }

        public LongAdder getTotalCount() {
            return totalCount;
        }

        public SimpleErrorCounter reset() {
            errorCount.reset();
            totalCount.reset();
            return this;
        }

        @Override
        public String toString() {
            return "SimpleErrorCounter{" +
                "errorCount=" + errorCount +
                ", totalCount=" + totalCount +
                '}';
        }
    }

    static class SimpleErrorCounterLeapArray extends LeapArray<SimpleErrorCounter> {

        public SimpleErrorCounterLeapArray(int sampleCount, int intervalInMs) {
            super(sampleCount, intervalInMs);
        }

        @Override
        public SimpleErrorCounter newEmptyBucket(long timeMillis) {
            return new SimpleErrorCounter();
        }

        @Override
        protected WindowWrap<SimpleErrorCounter> resetWindowTo(WindowWrap<SimpleErrorCounter> w, long startTime) {
            // Update the start time and reset value.
            w.resetTo(startTime);
            w.value().reset();
            return w;
        }
    }
}


2.6 SystemSlot

校驗邏輯主要集中在com.alibaba.csp.sentinel.slots.system.SystemRuleManager#checkSystem,以下是片段,可以看到,作為負載保護規則校驗,實現了叢集的QPS、執行緒、RT(響應時間)、系統負載的控制,除系統負載以外,其餘統計都是依賴StatisticSlot實現,系統負載是通過SystemRuleManager定時排程SystemStatusListener,通過OperatingSystemMXBean去獲取

/**
     * Apply {@link SystemRule} to the resource. Only inbound traffic will be checked.
     *
     * @param resourceWrapper the resource.
     * @throws BlockException when any system rule's threshold is exceeded.
     */
    public static void checkSystem(ResourceWrapper resourceWrapper, int count) throws BlockException {
        if (resourceWrapper == null) {
            return;
        }
        // Ensure the checking switch is on.
        if (!checkSystemStatus.get()) {
            return;
        }

        // for inbound traffic only
        if (resourceWrapper.getEntryType() != EntryType.IN) {
            return;
        }

        // total qps 此處是拿到某個資源在叢集中的QPS總和,相關概念可以會看初始化關於Node的介紹
        double currentQps = Constants.ENTRY_NODE.passQps();
        if (currentQps + count > qps) {
            throw new SystemBlockException(resourceWrapper.getName(), "qps");
        }

        // total thread 
        int currentThread = Constants.ENTRY_NODE.curThreadNum();
        if (currentThread > maxThread) {
            throw new SystemBlockException(resourceWrapper.getName(), "thread");
        }

        double rt = Constants.ENTRY_NODE.avgRt();
        if (rt > maxRt) {
            throw new SystemBlockException(resourceWrapper.getName(), "rt");
        }

        // load. BBR algorithm.
        if (highestSystemLoadIsSet && getCurrentSystemAvgLoad() > highestSystemLoad) {
            if (!checkBbr(currentThread)) {
                throw new SystemBlockException(resourceWrapper.getName(), "load");
            }
        }

        // cpu usage
        if (highestCpuUsageIsSet && getCurrentCpuUsage() > highestCpuUsage) {
            throw new SystemBlockException(resourceWrapper.getName(), "cpu");
        }
    }

    private static boolean checkBbr(int currentThread) {
        if (currentThread > 1 &&
            currentThread > Constants.ENTRY_NODE.maxSuccessQps() * Constants.ENTRY_NODE.minRt() / 1000) {
            return false;
        }
        return true;
    }

    public static double getCurrentSystemAvgLoad() {
        return statusListener.getSystemAverageLoad();
    }

    public static double getCurrentCpuUsage() {
        return statusListener.getCpuUsage();
    }


public class SystemStatusListener implements Runnable {

    volatile double currentLoad = -1;
    volatile double currentCpuUsage = -1;

    volatile String reason = StringUtil.EMPTY;

    volatile long processCpuTime = 0;
    volatile long processUpTime = 0;

    public double getSystemAverageLoad() {
        return currentLoad;
    }

    public double getCpuUsage() {
        return currentCpuUsage;
    }

    @Override
    public void run() {
        try {
            OperatingSystemMXBean osBean = ManagementFactory.getPlatformMXBean(OperatingSystemMXBean.class);
            currentLoad = osBean.getSystemLoadAverage();

            /*
             * Java Doc copied from {@link OperatingSystemMXBean#getSystemCpuLoad()}:</br>
             * Returns the "recent cpu usage" for the whole system. This value is a double in the [0.0,1.0] interval.
             * A value of 0.0 means that all CPUs were idle during the recent period of time observed, while a value
             * of 1.0 means that all CPUs were actively running 100% of the time during the recent period being
             * observed. All values between 0.0 and 1.0 are possible depending of the activities going on in the
             * system. If the system recent cpu usage is not available, the method returns a negative value.
             */
            double systemCpuUsage = osBean.getSystemCpuLoad();

            // calculate process cpu usage to support application running in container environment
            RuntimeMXBean runtimeBean = ManagementFactory.getPlatformMXBean(RuntimeMXBean.class);
            long newProcessCpuTime = osBean.getProcessCpuTime();
            long newProcessUpTime = runtimeBean.getUptime();
            int cpuCores = osBean.getAvailableProcessors();
            long processCpuTimeDiffInMs = TimeUnit.NANOSECONDS
                    .toMillis(newProcessCpuTime - processCpuTime);
            long processUpTimeDiffInMs = newProcessUpTime - processUpTime;
            double processCpuUsage = (double) processCpuTimeDiffInMs / processUpTimeDiffInMs / cpuCores;
            processCpuTime = newProcessCpuTime;
            processUpTime = newProcessUpTime;

            currentCpuUsage = Math.max(processCpuUsage, systemCpuUsage);

            if (currentLoad > SystemRuleManager.getSystemLoadThreshold()) {
                writeSystemStatusLog();
            }
        } catch (Throwable e) {
            RecordLog.warn("[SystemStatusListener] Failed to get system metrics from JMX", e);
        }
    }

    private void writeSystemStatusLog() {
        StringBuilder sb = new StringBuilder();
        sb.append("Load exceeds the threshold: ");
        sb.append("load:").append(String.format("%.4f", currentLoad)).append("; ");
        sb.append("cpuUsage:").append(String.format("%.4f", currentCpuUsage)).append("; ");
        sb.append("qps:").append(String.format("%.4f", Constants.ENTRY_NODE.passQps())).append("; ");
        sb.append("rt:").append(String.format("%.4f", Constants.ENTRY_NODE.avgRt())).append("; ");
        sb.append("thread:").append(Constants.ENTRY_NODE.curThreadNum()).append("; ");
        sb.append("success:").append(String.format("%.4f", Constants.ENTRY_NODE.successQps())).append("; ");
        sb.append("minRt:").append(String.format("%.2f", Constants.ENTRY_NODE.minRt())).append("; ");
        sb.append("maxSuccess:").append(String.format("%.2f", Constants.ENTRY_NODE.maxSuccessQps())).append("; ");
        RecordLog.info(sb.toString());
    }
}


三、京東版最佳實踐

3.1 使用方式

Sentinel使用方式本身非常簡單,就是一個註解,但是要考慮規則載入和規則持久化的方式,現有的方式有:

•使用Sentinel-dashboard功能:使用面板接入需要維護一個設定規則的管理端,考慮到偏後端的系統需要額外維護一個面板成本較大,如果是像RPC框架這種本身有管理端的接入可以考慮次方案。

•中介軟體(如:zookepper、nacos、eureka、redis等):Sentinel原始碼extension包裡提供了類似的實現,如下圖

結合京東實際,我實現了一個規則熱部署的Sentinel元件,實現方式類似zookeeper的方式,將規則記錄到ducc的一個key上,在spring容器啟動時做第一次規則載入和監聽器註冊,元件也做一了一些規則讀取,校驗、範例化不同規則物件的工作

外掛使用方式:註解+設定

第一步 引入元件

<dependency>
    <groupId>com.jd.ldop.tools</groupId>
    <artifactId>sentinel-tools</artifactId>
    <version>1.0.0-SNAPSHOT</version>
</dependency>


第二步 初始化sentinelProcess

支援ducc、本地檔案讀取、直接寫入三種方式規則寫入方式

目前支援限流規則、熔斷降級規則兩種模式,系統負載保護模式待開發和驗證

<!-- 基於sentinel的降級、限流、熔斷元件 -->
    <bean id="sentinelProcess" class="com.jd.ldop.sentinel.SentinelProcess">
        <property name="ruleResourceWrappers">
            <list>
                <ref bean="degradeRule"/>
            </list>
        </property>
    </bean>

    <!-- 降級或限流規則設定 -->
    <bean id="degradeRule" class="com.jd.ldop.sentinel.dto.RuleResourceWrapper">
        <constructor-arg index="0" value="ducc.degradeRule"/>
        <constructor-arg index="1" value="0"/>
        <constructor-arg index="2" value="0"/>
    </bean>


ducc上設定如下:

第三步 定義資源和關聯型別

通過@SentinelResource可以直接在任意位置定義資源名以及對應的熔斷降級或者限流方式、回撥方法等,同時也可以指定關聯型別,支援直接、關聯、指定鏈路三種

    @Override
    @SentinelResource(value = "modifyGetWaybillState", fallback = "executeDegrade")
    public ExecutionResult<List<Integer>> execute(@NotNull Model imodel) {
        // 業務邏輯處理
    }

    public ExecutionResult<List<Integer>> executeDegrade(@NotNull Model imodel) {
        // 降級業務邏輯處理
    }


3.2 應用場景

元件支援任意的業務降級、限流、負載保護

四、Sentinel壓測資料

4.1 壓測目標

呼叫量:1.2W/m

應用機器記憶體穩定在50%以內

機器規格: 8C16G50G磁碟*2

Sentinel降級規則:

count=350-------慢呼叫臨界閾值350ms

timeWindow=180------熔斷時間視窗180s

grade=0-----降級模式 慢呼叫

statIntervalMs=60000------統計時長1min

4.2 壓測結果

應用機器監控:

壓測分為了兩個階段,分別是元件開啟和元件關閉兩次,前半部分是元件開啟的情況,後半部分是元件關閉的情況

應用程序記憶體分析,和sentinel有關的前三物件是

com.alibaba.csp.sentinel.node.metric.MetricNode

com.alibaba.csp.sentinel.CtEntry

com.alibaba.csp.sentinel.context.Context

4.3 壓測結論

使Sentinel元件實現系統服務自動降級或限流,由於sentinel會按照滑動視窗週期性統計資料,因此會佔用一定的機器記憶體,使用時應設定合理的規則,如:合理的統計時長、避免過多的Sentinel資源建立等。

總體來說,使用sentinel元件對應用cpu和記憶體影響不大。