極速進化,光速轉錄,C++版本人工智慧實時語音轉文字(字幕/語音識別)Whisper.cpp實踐

2023-05-04 12:00:46

業界良心OpenAI開源的Whisper模型是開源語音轉文字領域的執牛耳者,白璧微瑕之處在於無法通過蘋果M晶片優化轉錄效率,Whisper.cpp 則是 Whisper 模型的 C/C++ 移植版本,它具有無依賴項、記憶體使用量低等特點,重要的是增加了 Core ML 支援,完美適配蘋果M系列晶片。

Whisper.cpp的張量運運算元針對蘋果M晶片的 CPU 進行了大量優化,根據計算大小,使用 Arm Neon SIMD instrisics 或 CBLAS Accelerate 框架例程,後者對於更大的尺寸特別有效,因為 Accelerate 框架可以使用蘋果M系列晶片中提供的專用 AMX 協處理器。

設定Whisper.cpp

老規矩,執行git命令來克隆Whisper.cpp專案:

git clone https://github.com/ggerganov/whisper.cpp.git

隨後進入專案的目錄:

cd whisper.cpp

專案預設的基礎模型不支援中文,這裡推薦使用medium模型,通過shell指令碼進行下載:

bash ./models/download-ggml-model.sh medium

下載完成後,會在專案的models目錄儲存ggml-medium.bin模型檔案,大小為1.53GB:

whisper.cpp git:(master) cd models   
➜  models git:(master) ll  
total 3006000  
-rw-r--r--  1 liuyue  staff   3.2K  4 21 07:21 README.md  
-rw-r--r--  1 liuyue  staff   7.2K  4 21 07:21 convert-h5-to-ggml.py  
-rw-r--r--  1 liuyue  staff   9.2K  4 21 07:21 convert-pt-to-ggml.py  
-rw-r--r--  1 liuyue  staff    13K  4 21 07:21 convert-whisper-to-coreml.py  
drwxr-xr-x  4 liuyue  staff   128B  4 22 00:33 coreml-encoder-medium.mlpackage  
-rwxr-xr-x  1 liuyue  staff   2.1K  4 21 07:21 download-coreml-model.sh  
-rw-r--r--  1 liuyue  staff   1.3K  4 21 07:21 download-ggml-model.cmd  
-rwxr-xr-x  1 liuyue  staff   2.0K  4 21 07:21 download-ggml-model.sh  
-rw-r--r--  1 liuyue  staff   562K  4 21 07:21 for-tests-ggml-base.bin  
-rw-r--r--  1 liuyue  staff   573K  4 21 07:21 for-tests-ggml-base.en.bin  
-rw-r--r--  1 liuyue  staff   562K  4 21 07:21 for-tests-ggml-large.bin  
-rw-r--r--  1 liuyue  staff   562K  4 21 07:21 for-tests-ggml-medium.bin  
-rw-r--r--  1 liuyue  staff   573K  4 21 07:21 for-tests-ggml-medium.en.bin  
-rw-r--r--  1 liuyue  staff   562K  4 21 07:21 for-tests-ggml-small.bin  
-rw-r--r--  1 liuyue  staff   573K  4 21 07:21 for-tests-ggml-small.en.bin  
-rw-r--r--  1 liuyue  staff   562K  4 21 07:21 for-tests-ggml-tiny.bin  
-rw-r--r--  1 liuyue  staff   573K  4 21 07:21 for-tests-ggml-tiny.en.bin  
-rwxr-xr-x  1 liuyue  staff   1.4K  4 21 07:21 generate-coreml-interface.sh  
-rwxr-xr-x@ 1 liuyue  staff   769B  4 21 07:21 generate-coreml-model.sh  
-rw-r--r--  1 liuyue  staff   1.4G  3 22 16:04 ggml-medium.bin

模型下載以後,在根目錄編譯可執行檔案:

make

程式返回:

➜  whisper.cpp git:(master) make  
I whisper.cpp build info:   
I UNAME_S:  Darwin  
I UNAME_P:  arm  
I UNAME_M:  arm64  
I CFLAGS:   -I.              -O3 -DNDEBUG -std=c11   -fPIC -pthread -DGGML_USE_ACCELERATE  
I CXXFLAGS: -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC -pthread  
I LDFLAGS:   -framework Accelerate  
I CC:       Apple clang version 14.0.3 (clang-1403.0.22.14.1)  
I CXX:      Apple clang version 14.0.3 (clang-1403.0.22.14.1)  
  
c++ -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC -pthread examples/bench/bench.cpp ggml.o whisper.o -o bench  -framework Accelerate

至此,Whisper.cpp就設定好了。

牛刀小試

現在我們來測試一段語音,看看效果:

./main -osrt -m ./models/ggml-medium.bin -f samples/jfk.wav

這行命令的含義是通過剛才下載ggml-medium.bin模型來對專案中的samples/jfk.wav語音檔案進行識別,這段語音是遇刺的美國總統肯尼迪的著名演講,程式返回:

➜  whisper.cpp git:(master) ./main -osrt -m ./models/ggml-medium.bin -f samples/jfk.wav  
whisper_init_from_file_no_state: loading model from './models/ggml-medium.bin'  
whisper_model_load: loading model  
whisper_model_load: n_vocab       = 51865  
whisper_model_load: n_audio_ctx   = 1500  
whisper_model_load: n_audio_state = 1024  
whisper_model_load: n_audio_head  = 16  
whisper_model_load: n_audio_layer = 24  
whisper_model_load: n_text_ctx    = 448  
whisper_model_load: n_text_state  = 1024  
whisper_model_load: n_text_head   = 16  
whisper_model_load: n_text_layer  = 24  
whisper_model_load: n_mels        = 80  
whisper_model_load: f16           = 1  
whisper_model_load: type          = 4  
whisper_model_load: mem required  = 1725.00 MB (+   43.00 MB per decoder)  
whisper_model_load: adding 1608 extra tokens  
whisper_model_load: model ctx     = 1462.35 MB  
whisper_model_load: model size    = 1462.12 MB  
whisper_init_state: kv self size  =   42.00 MB  
whisper_init_state: kv cross size =  140.62 MB  
  
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 | COREML = 0 |   
  
main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...  
  
  
[00:00:00.000 --> 00:00:11.000]   And so, my fellow Americans, ask not what your country can do for you, ask what you can do for your country.  
  
output_srt: saving output to 'samples/jfk.wav.srt'

只需要11秒,同時語音字幕會寫入samples/jfk.wav.srt檔案。

英文準確率是百分之百。

現在我們來換成中文語音,可以隨便錄製一段語音,需要注意的是,Whisper.cpp只支援wav格式的語音檔案,這裡先通過ffmpeg將mp3檔案轉換為wav:

ffmpeg -i ./test1.mp3 -ar 16000 -ac 1 -c:a pcm_s16le ./test1.wav

程式返回:

ffmpeg version 5.1.2 Copyright (c) 2000-2022 the FFmpeg developers  
  built with Apple clang version 14.0.0 (clang-1400.0.29.202)  
  configuration: --prefix=/opt/homebrew/Cellar/ffmpeg/5.1.2_1 --enable-shared --enable-pthreads --enable-version3 --cc=clang --host-cflags= --host-ldflags= --enable-ffplay --enable-gnutls --enable-gpl --enable-libaom --enable-libbluray --enable-libdav1d --enable-libmp3lame --enable-libopus --enable-librav1e --enable-librist --enable-librubberband --enable-libsnappy --enable-libsrt --enable-libtesseract --enable-libtheora --enable-libvidstab --enable-libvmaf --enable-libvorbis --enable-libvpx --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxml2 --enable-libxvid --enable-lzma --enable-libfontconfig --enable-libfreetype --enable-frei0r --enable-libass --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-libspeex --enable-libsoxr --enable-libzmq --enable-libzimg --disable-libjack --disable-indev=jack --enable-videotoolbox --enable-neon  
  libavutil      57. 28.100 / 57. 28.100  
  libavcodec     59. 37.100 / 59. 37.100  
  libavformat    59. 27.100 / 59. 27.100  
  libavdevice    59.  7.100 / 59.  7.100  
  libavfilter     8. 44.100 /  8. 44.100  
  libswscale      6.  7.100 /  6.  7.100  
  libswresample   4.  7.100 /  4.  7.100  
  libpostproc    56.  6.100 / 56.  6.100  
[mp3 @ 0x130e05580] Estimating duration from bitrate, this may be inaccurate  
Input #0, mp3, from './test1.mp3':  
  Duration: 00:05:41.33, start: 0.000000, bitrate: 48 kb/s  
  Stream #0:0: Audio: mp3, 24000 Hz, mono, fltp, 48 kb/s  
Stream mapping:  
  Stream #0:0 -> #0:0 (mp3 (mp3float) -> pcm_s16le (native))  
Press [q] to stop, [?] for help  
Output #0, wav, to './test1.wav':  
  Metadata:  
    ISFT            : Lavf59.27.100  
  Stream #0:0: Audio: pcm_s16le ([1][0][0][0] / 0x0001), 16000 Hz, mono, s16, 256 kb/s  
    Metadata:  
      encoder         : Lavc59.37.100 pcm_s16le  
[mp3float @ 0x132004260] overread, skip -6 enddists: -4 -4ed=N/A      
    Last message repeated 1 times  
[mp3float @ 0x132004260] overread, skip -7 enddists: -1 -1  
[mp3float @ 0x132004260] overread, skip -7 enddists: -2 -2  
[mp3float @ 0x132004260] overread, skip -7 enddists: -1 -1  
[mp3float @ 0x132004260] overread, skip -9 enddists: -2 -2  
[mp3float @ 0x132004260] overread, skip -5 enddists: -1 -1  
    Last message repeated 1 times  
[mp3float @ 0x132004260] overread, skip -7 enddists: -3 -3  
[mp3float @ 0x132004260] overread, skip -8 enddists: -5 -5  
[mp3float @ 0x132004260] overread, skip -5 enddists: -2 -2  
[mp3float @ 0x132004260] overread, skip -6 enddists: -1 -1  
[mp3float @ 0x132004260] overread, skip -7 enddists: -3 -3  
[mp3float @ 0x132004260] overread, skip -6 enddists: -2 -2  
[mp3float @ 0x132004260] overread, skip -6 enddists: -3 -3  
[mp3float @ 0x132004260] overread, skip -7 enddists: -6 -6  
[mp3float @ 0x132004260] overread, skip -9 enddists: -6 -6  
[mp3float @ 0x132004260] overread, skip -5 enddists: -3 -3  
[mp3float @ 0x132004260] overread, skip -5 enddists: -2 -2  
[mp3float @ 0x132004260] overread, skip -5 enddists: -3 -3  
[mp3float @ 0x132004260] overread, skip -7 enddists: -1 -1  
size=   10667kB time=00:05:41.32 bitrate= 256.0kbits/s speed=2.08e+03x      
video:0kB audio:10666kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.000714%

這裡將一段五分四十一秒的語音轉換為wav檔案。

隨後執行命令開始轉錄:

./main -osrt -m ./models/ggml-medium.bin -f samples/test1.wav -l zh

這裡需要加上引數-l,告知程式為中文語音,程式返回:

➜  whisper.cpp git:(master) ./main -osrt -m ./models/ggml-medium.bin -f samples/test1.wav -l zh  
whisper_init_from_file_no_state: loading model from './models/ggml-medium.bin'  
whisper_model_load: loading model  
whisper_model_load: n_vocab       = 51865  
whisper_model_load: n_audio_ctx   = 1500  
whisper_model_load: n_audio_state = 1024  
whisper_model_load: n_audio_head  = 16  
whisper_model_load: n_audio_layer = 24  
whisper_model_load: n_text_ctx    = 448  
whisper_model_load: n_text_state  = 1024  
whisper_model_load: n_text_head   = 16  
whisper_model_load: n_text_layer  = 24  
whisper_model_load: n_mels        = 80  
whisper_model_load: f16           = 1  
whisper_model_load: type          = 4  
whisper_model_load: mem required  = 1725.00 MB (+   43.00 MB per decoder)  
whisper_model_load: adding 1608 extra tokens  
whisper_model_load: model ctx     = 1462.35 MB  
whisper_model_load: model size    = 1462.12 MB  
whisper_init_state: kv self size  =   42.00 MB  
whisper_init_state: kv cross size =  140.62 MB  
  
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 | COREML = 0 |   
  
main: processing 'samples/test1.wav' (5461248 samples, 341.3 sec), 4 threads, 1 processors, lang = zh, task = transcribe, timestamps = 1 ...  
  
  
[00:00:00.000 --> 00:00:03.340]  Hello 大家好,這裡是劉越的技術部落格。  
[00:00:03.340 --> 00:00:05.720]  最近的事情大家都曉得了,  
[00:00:05.720 --> 00:00:07.880]  某公司技術經理魅上欺下,  
[00:00:07.880 --> 00:00:10.380]  打工人應對進隊,不易快災,  
[00:00:10.380 --> 00:00:12.020]  不易壯災,  
[00:00:12.020 --> 00:00:14.280]  所謂魅上者必欺下,  
[00:00:14.280 --> 00:00:16.020]  古人誠不我竊。  
[00:00:16.020 --> 00:00:17.360]  技術經理者,  
[00:00:17.360 --> 00:00:20.160]  公然在聊天群裡大玩職場PUA,  
[00:00:20.160 --> 00:00:22.400]  氣焰囂張,有恃無恐,  
[00:00:22.400 --> 00:00:23.700]  最終引發眾目,  
[00:00:23.700 --> 00:00:26.500]  嘿嘿,技術經理,團隊領導,  
[00:00:26.500 --> 00:00:29.300]  原來團隊領導這四個字是這麼用的,  
[00:00:29.300 --> 00:00:31.540]  奴媚顯達,構陷下屬,  
[00:00:31.540 --> 00:00:32.780]  人文巨損,  
[00:00:32.780 --> 00:00:33.840]  逢迎上意,  
[00:00:33.840 --> 00:00:34.980]  傲然下欺,  
[00:00:34.980 --> 00:00:36.080]  裝腔作勢,  
[00:00:36.080 --> 00:00:37.180]  極盡投機,  
[00:00:37.180 --> 00:00:38.320]  負他人之負,  
[00:00:38.320 --> 00:00:39.620]  康他人之愷,  
[00:00:39.620 --> 00:00:42.180]  如此者,可謂團隊領導也。  
[00:00:42.180 --> 00:00:43.980]  中國的所謂傳統文化,  
[00:00:43.980 --> 00:00:45.320]  除了仁義理智性,  
[00:00:45.320 --> 00:00:46.620]  除了金石子極,  
[00:00:46.620 --> 00:00:47.820]  除了爭爭風骨,  
[00:00:47.820 --> 00:00:49.560]  其實還有很多別的東西,  
[00:00:49.560 --> 00:00:52.020]  被大家或有意或無意的忽視了,  
[00:00:52.020 --> 00:00:53.300]  比如功利實用,  
[00:00:53.300 --> 00:00:54.300]  屈顏附示,  
[00:00:54.300 --> 00:00:55.360]  以兼至善,  
[00:00:55.360 --> 00:01:01.000]  官本位和錢規則的傳統,在某種程度上,傳統文化這沒硬幣的另一面,  
[00:01:01.000 --> 00:01:03.900]  才是更需要我們去面對和正視的,  
[00:01:03.900 --> 00:01:07.140]  我以為,這在目前盛行實惠價值觀的時候,  
[00:01:07.140 --> 00:01:08.940]  提一提還是必要的,  
[00:01:08.940 --> 00:01:10.240]  有的人說了,  
[00:01:10.240 --> 00:01:13.740]  在開發群裡對領導,非常痛快,非常爽,  
[00:01:13.740 --> 00:01:17.180]  但是,然後呢,有用嗎?  
[00:01:17.180 --> 00:01:19.260]  倒黴的還不是自己,  
[00:01:19.260 --> 00:01:22.520]  沒錯,這就是功利且實用的傳統,  
[00:01:22.520 --> 00:01:28.780]  各種精神,思辨,反抗,憤怒,都抵不過三個字,有用嗎?  
[00:01:28.780 --> 00:01:31.820]  事實上,但凡叫做某種精神的,  
[00:01:31.820 --> 00:01:33.320]  那就是哲學思辨,  
[00:01:33.320 --> 00:01:36.220]  就是一種相對無用的思辨和學術,  
[00:01:36.220 --> 00:01:39.180]  而中國職場有很強的實用傳統,  
[00:01:39.180 --> 00:01:42.140]  但這不是學術思辨,也沒有理論構架,  
[00:01:42.140 --> 00:01:44.380]  僅僅是一種短視的經驗論,  
[00:01:44.380 --> 00:01:47.220]  所以,功利主義,是密爾,  
[00:01:47.220 --> 00:01:48.980]  編慶的倫理價值學說,  
[00:01:48.980 --> 00:01:52.700]  強調的是,追求幸福,如何獲得最大效用,  
[00:01:52.700 --> 00:01:55.580]  實用主義,是西方的一個學術流派,  
[00:01:55.580 --> 00:01:58.260]  比如杜威,胡適,就是代表,  
[00:01:58.260 --> 00:02:01.180]  實用主義的另一個名字,叫人本主義,  
[00:02:01.180 --> 00:02:04.780]  意思是,以人作為經驗和萬物的尺度,  
[00:02:04.780 --> 00:02:06.080]  換句話說,  
[00:02:06.080 --> 00:02:09.420]  功利主義,反對的正是那種短視的功利,  
[00:02:09.420 --> 00:02:13.220]  實用主義,反對的也正是那種凡是看對自己,  
[00:02:13.220 --> 00:02:15.220]  是不是有利的侷限判斷,  
[00:02:15.220 --> 00:02:17.260]  而在中國職場功利,  
[00:02:17.260 --> 00:02:21.060]  實用的傳統中,恰恰是不會有這些理論構架的,  
[00:02:21.060 --> 00:02:23.700]  並且,不僅沒有理論構架,  
[00:02:23.700 --> 00:02:26.140]  還要對那些無用的,思辨的,  
[00:02:26.140 --> 00:02:29.980]  純粹的精神,視如避喜,吃之以鼻,  
[00:02:29.980 --> 00:02:32.260]  沒錯,在技術團隊裡,  
[00:02:32.260 --> 00:02:35.260]  我們重視技術,重視實用的科學,  
[00:02:35.260 --> 00:02:38.900]  但是主流職場並不鼓勵去搞那些看似無用的東西,  
[00:02:38.900 --> 00:02:41.380]  比如普通勞動者的合法權益,  
[00:02:41.380 --> 00:02:43.580]  張義謀的滿江紅,  
[00:02:43.580 --> 00:02:45.220]  大家想必也都看了的,  
[00:02:45.220 --> 00:02:46.820]  人們總覺得很奇怪,  
[00:02:46.820 --> 00:02:48.300]  為什麼那麼壞的人,  
[00:02:48.300 --> 00:02:50.020]  皇帝為啥不罷免他?  
[00:02:50.020 --> 00:02:53.140]  為什麼小人能當權來構陷好人呢?  
[00:02:53.140 --> 00:02:55.980]  當我們瞭解了傳統文化中的法家思想,  
[00:02:55.980 --> 00:02:57.300]  就瞭然了,  
[00:02:57.300 --> 00:02:59.260]  在法家的思想規則下,  
[00:02:59.260 --> 00:03:01.660]  小人得是,忠良備辱,  
[00:03:01.660 --> 00:03:03.140]  事事所必然,  
[00:03:03.140 --> 00:03:04.900]  因為他一開始的設定,  
[00:03:04.900 --> 00:03:07.540]  就使得劣幣驅逐良幣的遊戲規則,  
[00:03:07.540 --> 00:03:09.940]  所以,在這種觀念下,  
[00:03:09.940 --> 00:03:12.460]  古代常見的一種職場智慧就是,  
[00:03:12.460 --> 00:03:14.820]  自汙名節,以求自保,  
[00:03:14.820 --> 00:03:16.420]  在這種環境下,  
[00:03:16.420 --> 00:03:17.780]  要想生存,  
[00:03:17.780 --> 00:03:19.260]  就只有一條出路,  
[00:03:19.260 --> 00:03:20.900]  那就是依附權力,  
[00:03:20.900 --> 00:03:23.700]  並且,誰能擁有更大的權力,  
[00:03:23.700 --> 00:03:25.700]  誰就能生存得更好,  
[00:03:25.700 --> 00:03:27.500]  如何依附權力呢?  
[00:03:27.500 --> 00:03:29.180]  那就是現在正在發生的,  
[00:03:29.180 --> 00:03:31.900]  肆無忌憚的大腕職場PUA,  
[00:03:31.900 --> 00:03:33.060]  除此之外,  
[00:03:33.060 --> 00:03:34.340]  這種權力關係,  
[00:03:34.340 --> 00:03:36.900]  在古代會滲透到方方面面,  
[00:03:36.900 --> 00:03:40.300]  因為權力系統是一個複雜而高效的執行機器,  
[00:03:40.300 --> 00:03:42.940]  CPU,記憶體,硬碟,  
[00:03:42.940 --> 00:03:44.900]  甚至一顆C面底螺絲釘,  
[00:03:44.900 --> 00:03:47.140]  都是權力機器上的一個環節,  
[00:03:47.140 --> 00:03:48.060]  於是,  
[00:03:48.060 --> 00:03:50.420]  官僚體系之外的一切職場人,  
[00:03:50.420 --> 00:03:52.340]  都會面臨一個尷尬的處境,  
[00:03:52.340 --> 00:03:54.340]  一方面遭遇權力的打壓,  
[00:03:54.340 --> 00:03:55.340]  另一方面,  
[00:03:55.340 --> 00:03:57.900]  也都會多少嚐到權力的甜頭,  
[00:03:57.900 --> 00:03:58.900]  於是乎,  
[00:03:58.900 --> 00:04:01.420]  權力的細胞滲透到角角落落,  
[00:04:01.420 --> 00:04:02.980]  即便沒有組織權力,  
[00:04:02.980 --> 00:04:04.620]  也要追求文化權力,  
[00:04:04.620 --> 00:04:05.500]  父權,  
[00:04:05.500 --> 00:04:06.380]  夫權,  
[00:04:06.380 --> 00:04:07.460]  家長權力,  
[00:04:07.460 --> 00:04:08.580]  宗族權力,  
[00:04:08.580 --> 00:04:09.660]  老師權力,  
[00:04:09.660 --> 00:04:10.780]  公司權力,  
[00:04:10.780 --> 00:04:12.140]  團隊領導權力,  
[00:04:12.140 --> 00:04:13.100]  點點滴滴,  
[00:04:13.100 --> 00:04:15.580]  滴滴點點,追逐權力,  
[00:04:15.580 --> 00:04:18.140]  幾乎成為人們生活的全部意義,  
[00:04:18.140 --> 00:04:18.980]  故而,  
[00:04:18.980 --> 00:04:19.980]  服從權力,  
[00:04:19.980 --> 00:04:21.180]  服從上級,  
[00:04:21.180 --> 00:04:22.420]  不得罪同事,  
[00:04:22.420 --> 00:04:23.660]  不得罪朋友,  
[00:04:23.660 --> 00:04:25.060]  不得罪陌生人,  
[00:04:25.060 --> 00:04:26.100]  因為你不知道,  
[00:04:26.100 --> 00:04:28.260]  他們背後有什麼的權力關係,  
[00:04:28.260 --> 00:04:30.940]  他們又會不會用這個權力來對付你,  
[00:04:30.940 --> 00:04:31.940]  沒錯,  
[00:04:31.940 --> 00:04:34.380]  當我們解構群裡那位領導的行為時,  
[00:04:34.380 --> 00:04:36.220]  我們也在解構我們自己,  
[00:04:36.220 --> 00:04:37.420]  毫無疑問,  
[00:04:37.420 --> 00:04:39.380]  對於這位敢於發聲的職場人,  
[00:04:39.380 --> 00:04:41.180]  深安職場底層邏輯的,  
[00:04:41.180 --> 00:04:43.220]  我們一定能猜到他的結局,  
[00:04:43.220 --> 00:04:44.700]  他的結局是註定的,  
[00:04:44.700 --> 00:04:46.220]  同時也是悲哀的,  
[00:04:46.220 --> 00:04:47.340]  問題是,  
[00:04:47.340 --> 00:04:48.540]  這樣做,  
[00:04:48.540 --> 00:04:49.660]  值得嗎?  
[00:04:49.660 --> 00:04:52.580]  香港著名導演王家衛拍過一部電影,  
[00:04:52.580 --> 00:04:54.420]  叫做東邪西毒,  
[00:04:54.420 --> 00:04:56.340]  電影中有這樣一個情節,  
[00:04:56.340 --> 00:04:59.620]  有個女人的弟弟被太尉府的一群刀客殺了,  
[00:04:59.620 --> 00:05:00.860]  他想報仇,  
[00:05:00.860 --> 00:05:02.300]  可自己沒有武功,  
[00:05:02.300 --> 00:05:04.060]  只能請刀客出手,  
[00:05:04.060 --> 00:05:05.540]  但家裡窮沒錢,  
[00:05:05.540 --> 00:05:08.540]  最有價值的資產是一籃子雞蛋,  
[00:05:08.540 --> 00:05:09.260]  於是,  
[00:05:09.260 --> 00:05:10.900]  他提著那一籃子雞蛋,  
[00:05:10.900 --> 00:05:13.420]  天天站在刀客劍客們經過的路口,  
[00:05:13.420 --> 00:05:14.700]  請求他們出手,  
[00:05:14.700 --> 00:05:16.220]  報仇就是雞蛋,  
[00:05:16.220 --> 00:05:17.860]  沒有人願意為了雞蛋,  
[00:05:17.860 --> 00:05:20.020]  去單挑太尉府的刀客,  
[00:05:20.020 --> 00:05:21.460]  除了洪七,  
[00:05:21.460 --> 00:05:24.260]  洪七獨自力戰太尉府那幫刀客,  
[00:05:24.260 --> 00:05:26.780]  所得的報仇是一個雞蛋,  
[00:05:26.780 --> 00:05:29.020]  但是洪七付出的代價太大,  
[00:05:29.020 --> 00:05:30.060]  混戰中,  
[00:05:30.060 --> 00:05:32.700]  洪七被對手砍斷了一根手指,  
[00:05:32.700 --> 00:05:33.820]  為了一個雞蛋,  
[00:05:33.820 --> 00:05:35.500]  而失去一隻手指,  
[00:05:35.500 --> 00:05:36.740]  值得嗎?  
[00:05:36.740 --> 00:05:37.860]  不值得,  
[00:05:37.860 --> 00:05:39.300]  但是我覺得痛快,  
[00:05:39.300 --> 00:05:40.540]  因為這才是我自己  
  
output_srt: saving output to 'samples/test1.wav.srt'  
  
whisper_print_timings:     load time =   978.82 ms  
whisper_print_timings:     fallbacks =   0 p /   0 h  
whisper_print_timings:      mel time =   438.81 ms  
whisper_print_timings:   sample time =   980.66 ms /  2343 runs (    0.42 ms per run)  
whisper_print_timings:   encode time = 31476.10 ms /    13 runs ( 2421.24 ms per run)  
whisper_print_timings:   decode time = 47833.70 ms /  2343 runs (   20.42 ms per run)  
whisper_print_timings:    total time = 81797.88 ms

五分鐘的語音,只需要一分鐘多一點就可以轉錄完成,效率滿分。

當然,精確度還有待提高,提高精確度可以選擇large模型,但轉錄時間會相應增加。

蘋果M晶片模型轉換

基於蘋果Mac系統的使用者有福了,Whisper.cpp可以通過Core ML在Apple Neural Engine (ANE)上執行編碼器推理,這可以比僅使用CPU執行快出三倍以上。

首先安裝轉換依賴:

pip install ane_transformers  
pip install openai-whisper  
pip install coremltools

接著執行轉換指令碼:

./models/generate-coreml-model.sh medium 

這裡引數即模型的名稱。

程式返回:

➜  models git:(master) python3 convert-whisper-to-coreml.py --model medium --encoder-only True   
scikit-learn version 1.2.0 is not supported. Minimum required version: 0.17. Maximum required version: 1.1.2. Disabling scikit-learn conversion API.  
ModelDimensions(n_mels=80, n_audio_ctx=1500, n_audio_state=1024, n_audio_head=16, n_audio_layer=24, n_vocab=51865, n_text_ctx=448, n_text_state=1024, n_text_head=16, n_text_layer=24)  
/opt/homebrew/lib/python3.10/site-packages/whisper/model.py:166: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!  
  assert x.shape[1:] == self.positional_embedding.shape, "incorrect audio shape"  
/opt/homebrew/lib/python3.10/site-packages/whisper/model.py:97: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').  
  scale = (n_state // self.n_head) ** -0.25  
Converting PyTorch Frontend ==> MIL Ops: 100%|▉| 1971/1972 [00:00<00:00, 3247.25  
Running MIL frontend_pytorch pipeline: 100%|█| 5/5 [00:00<00:00, 54.69 passes/s]  
Running MIL default pipeline: 100%|████████| 57/57 [00:09<00:00,  6.29 passes/s]  
Running MIL backend_mlprogram pipeline: 100%|█| 10/10 [00:00<00:00, 444.13 passe  
  
  
  
  
  
  
done converting

轉換好以後,重新進行編譯:

make clean  
WHISPER_COREML=1 make -j

隨後用轉換後的模型進行轉錄即可:

./main -m models/ggml-medium.bin -f samples/jfk.wav

至此,Mac使用者立馬榮升一等公民。

結語

Whisper.cpp是Whisper的精神復刻與肉體重生,完美承襲了Whisper的所有功能,在此之上,提高了語音轉錄文字的速度和效率以及跨平臺移植性,百尺竿頭更進一步,開源技術的高速發展讓我們明白了一件事,那就是高品質技術的傳播遠比技術本身更加寶貴。