Qt原始碼閱讀(四) 事件迴圈

2023-03-30 21:00:45

事件系統

文章為本人理解,如有理解不到位之處,煩請各位指正。

@


Qt的事件迴圈,應該是所有Qter都避不開的一個點,所以,這篇部落格,咱們來了解原始碼中一些關於Qt中事件迴圈的部分。
先丟擲幾個疑問,根據原始碼,下面一一進行解析。

  1. 事件迴圈是什麼?
  2. 事件是怎麼產生的?
  3. 事件是如何處理的?

什麼是事件迴圈?

對於Qt事件迴圈個人理解是,事件迴圈是一個佇列去迴圈處理事件。當佇列中有事件時,則去處理事件,如果沒有事件時,則會阻塞等待。

事件是如何產生的?

事件的產生可以分為兩種:

  1. 程式外部產生
  2. 程式內部產生

程式外部所產生的事件主要是指系統產生的事件,比如說滑鼠按下(MouseButtonPress)、按鍵按下(KeyPress)等,Qt捕捉系統的事件,然後將系統事件封裝成自己的QEvent類,再將事件傳送出去。

程式內部產生的事件主要指我們在程式碼裡,手動建立一個事件,然後將事件通過sendEvent/postEvent,來傳送到事件迴圈中。而sendEventpostEvent區別又在於一個是阻塞的(sendEvent)一個是非阻塞的(postEvent)。

我們結合原始碼分析,看一下sendEventpostEvent分別幹了什麼導致一個是阻塞的一個是非阻塞的。

sendEvent

完整原始碼如下:

bool QCoreApplication::sendEvent(QObject *receiver, QEvent *event)
{
	// sendEvent是阻塞呼叫
    Q_TRACE(QCoreApplication_sendEvent, receiver, event, event->type());

    if (event)
        event->spont = false;
    return notifyInternal2(receiver, event);
}

可以看到,sendEvent是呼叫了notifyInternal2這個函數

bool QCoreApplication::notifyInternal2(QObject *receiver, QEvent *event)
{
	...
    // Qt enforces the rule that events can only be sent to objects in
    // the current thread, so receiver->d_func()->threadData is
    // equivalent to QThreadData::current(), just without the function
    // call overhead.
    // 事件只能在同一個執行緒被send
    QObjectPrivate *d = receiver->d_func();
    QThreadData *threadData = d->threadData;
    QScopedScopeLevelCounter scopeLevelCounter(threadData);
    if (!selfRequired)
        return doNotify(receiver, event);
    return self->notify(receiver, event);
}

進一步跟蹤到其doNotify函數

static bool doNotify(QObject *receiver, QEvent *event)
{
    if (receiver == nullptr) {                        // serious error
        qWarning("QCoreApplication::notify: Unexpected null receiver");
        return true;
    }

#ifndef QT_NO_DEBUG
	// 檢查接受執行緒與當前是否同執行緒
    QCoreApplicationPrivate::checkReceiverThread(receiver);
#endif

	// QWidget類必須用QApplication
    return receiver->isWidgetType() ? false : QCoreApplicationPrivate::notify_helper(receiver, event);
}

再到QCoreApplicationPrivate::notify_helper

bool QCoreApplicationPrivate::notify_helper(QObject *receiver, QEvent * event)
{
    // Note: when adjusting the tracepoints in here
    // consider adjusting QApplicationPrivate::notify_helper too.
    Q_TRACE(QCoreApplication_notify_entry, receiver, event, event->type());
    bool consumed = false;
    bool filtered = false;
    Q_TRACE_EXIT(QCoreApplication_notify_exit, consumed, filtered);

    // send to all application event filters (only does anything in the main thread)
    if (QCoreApplication::self
        && receiver->d_func()->threadData.loadRelaxed()->thread.loadAcquire() == mainThread()
        && QCoreApplication::self->d_func()->sendThroughApplicationEventFilters(receiver, event)) {
        filtered = true;
        return filtered;
    }
    // send to all receiver event filters
    if (sendThroughObjectEventFilters(receiver, event)) {
        filtered = true;
        return filtered;
    }

    // deliver the event
    // 直接呼叫物件的event函數,所以是阻塞的
    consumed = receiver->event(event);
    return consumed;
}

然後我們可以看到主要有幾個流程:

  1. 判斷QCoreApplication有沒有安裝事件過濾器,有就把訊號傳送到事件過濾器裡,由事件過濾器對事件進行處理。

    // send to all application event filters (only does anything in the main thread)
    if (QCoreApplication::self
        && receiver->d_func()->threadData.loadRelaxed()->thread.loadAcquire() == mainThread()
        && QCoreApplication::self->d_func()->sendThroughApplicationEventFilters(receiver, event)) {
        filtered = true;
        return filtered;
    }
    
  2. 判斷事件接受物件,有沒有安裝事件過濾器,有就將訊號傳送到事件過濾器。

    // send to all receiver event filters
    if (sendThroughObjectEventFilters(receiver, event)) {
        filtered = true;
        return filtered;
    }
    

    具體遍歷事件接受物件所安裝的事件過濾器的程式碼如下:

    bool QCoreApplicationPrivate::sendThroughObjectEventFilters(QObject *receiver, QEvent *event)
    {
        if (receiver != QCoreApplication::instance() && receiver->d_func()->extraData) {
            for (int i = 0; i < receiver->d_func()->extraData->eventFilters.size(); ++i) {
                QObject *obj = receiver->d_func()->extraData->eventFilters.at(i);
                if (!obj)
                    continue;
                if (obj->d_func()->threadData != receiver->d_func()->threadData) {
                    qWarning("QCoreApplication: Object event filter cannot be in a different thread.");
                    continue;
                }
                if (obj->eventFilter(receiver, event))
                    return true;
            }
        }
        return false;
    }
    

    我們可以看到,只要事件被一個事件過濾器所成功處理,那麼後續的事件過濾器就不會被響應。同時,參看Qt幫助手冊中有提及到:

    If multiple event filters are installed on a single object, the filter that was installed last is activated first.

    後插入的事件過濾器會被優先響應。 具體安裝事件過濾器,我們在後面進行分析。

  3. 直接呼叫事件接受物件的event函數進行處理。因為是直接呼叫的物件的event,所以說,sendEvent函數會阻塞等待。

        // deliver the event
        // 直接呼叫物件的event函數,所以是阻塞的
        consumed = receiver->event(event);
        return consumed
    

postEvent

完整程式碼如下:

void QCoreApplication::postEvent(QObject *receiver, QEvent *event, int priority)
{
    Q_TRACE_SCOPE(QCoreApplication_postEvent, receiver, event, event->type());

	// 事件的接收者不能為空
    if (receiver == nullptr) {
        qWarning("QCoreApplication::postEvent: Unexpected null receiver");
        delete event;
        return;
    }

	// 對事件接受物件所線上程的事件處理列表上鎖
    auto locker = QCoreApplicationPrivate::lockThreadPostEventList(receiver);
    if (!locker.threadData) {
        // posting during destruction? just delete the event to prevent a leak
        delete event;
        return;
    }

    QThreadData *data = locker.threadData;

    // if this is one of the compressible events, do compression
    // 將重複的事件,進行壓縮
    if (receiver->d_func()->postedEvents
        && self && self->compressEvent(event, receiver, &data->postEventList)) {
        Q_TRACE(QCoreApplication_postEvent_event_compressed, receiver, event);
        return;
    }

    if (event->type() == QEvent::DeferredDelete)
        receiver->d_ptr->deleteLaterCalled = true;

    if (event->type() == QEvent::DeferredDelete && data == QThreadData::current()) {
        // remember the current running eventloop for DeferredDelete
        // events posted in the receiver's thread.

        // Events sent by non-Qt event handlers (such as glib) may not
        // have the scopeLevel set correctly. The scope level makes sure that
        // code like this:
        //     foo->deleteLater();
        //     qApp->processEvents(); // without passing QEvent::DeferredDelete
        // will not cause "foo" to be deleted before returning to the event loop.

        // If the scope level is 0 while loopLevel != 0, we are called from a
        // non-conformant code path, and our best guess is that the scope level
        // should be 1. (Loop level 0 is special: it means that no event loops
        // are running.)
        int loopLevel = data->loopLevel;
        int scopeLevel = data->scopeLevel;
        if (scopeLevel == 0 && loopLevel != 0)
            scopeLevel = 1;
        static_cast<QDeferredDeleteEvent *>(event)->level = loopLevel + scopeLevel;
    }

    // delete the event on exceptions to protect against memory leaks till the event is
    // properly owned in the postEventList
    QScopedPointer<QEvent> eventDeleter(event);
    Q_TRACE(QCoreApplication_postEvent_event_posted, receiver, event, event->type());
    data->postEventList.addEvent(QPostEvent(receiver, event, priority));
    eventDeleter.take();
    event->posted = true;
    ++receiver->d_func()->postedEvents;
    data->canWait = false;
    locker.unlock();

    QAbstractEventDispatcher* dispatcher = data->eventDispatcher.loadAcquire();
    if (dispatcher)
        dispatcher->wakeUp();
}
  1. 判斷事件接收物件是否為空

    // 事件的接收者不能為空
    if (receiver == nullptr) {
        qWarning("QCoreApplication::postEvent: Unexpected null receiver");
        delete event;
        return;
    }
    
  2. 將事件接收物件所線上程的post事件列表上鎖,如果已經被鎖了,就把事件刪除掉,並返回,防止洩露。

    // 對事件接受物件所線上程的事件處理列表上鎖
    auto locker = QCoreApplicationPrivate::lockThreadPostEventList(receiver);
    if (!locker.threadData) {
        // posting during destruction? just delete the event to prevent a leak
        delete event;
        return;
    }
    
  3. 將一些可以壓縮的事件進行壓縮,及多個事件壓縮成只推播最後的一個事件。Qt介面的update就是這個操作,為了防止多次重新整理導致卡頓,短時間內多次的呼叫update可能只會重新整理一次

    // if this is one of the compressible events, do compression
    // 將重複的事件,進行壓縮
    if (receiver->d_func()->postedEvents
        && self && self->compressEvent(event, receiver, &data->postEventList)) {
        Q_TRACE(QCoreApplication_postEvent_event_compressed, receiver, event);
        return;
    }
    
  4. 將事件插入接收物件所線上程的post事件列表中,並喚醒執行緒的事件排程器,來進行事件的處理。所以postEvent是非阻塞的,因為其只是把事件插入了執行緒的事件列表,喚醒事件排程器之後便返回

        // delete the event on exceptions to protect against memory leaks till the event is
        // properly owned in the postEventList
        QScopedPointer<QEvent> eventDeleter(event);
        Q_TRACE(QCoreApplication_postEvent_event_posted, receiver, event, event->type());
        data->postEventList.addEvent(QPostEvent(receiver, event, priority));
        eventDeleter.take();
        event->posted = true;
        ++receiver->d_func()->postedEvents;
        data->canWait = false;
        locker.unlock();
    
        QAbstractEventDispatcher* dispatcher = data->eventDispatcher.loadAcquire();
        if (dispatcher)
            dispatcher->wakeUp();
    

事件是如何處理的?

在Qt中,事件的接收者都是QObject,而QObject中事件處理是呼叫event函數。如果當時物件不處理某個事件,就會將其轉發到父類別的event進行處理。
而事件的處理,主要分為三個部分:

  1. 先是由事件迴圈遍歷事件
  2. 然後判斷事件接受物件有沒有安裝事件過濾器(installEventFilter),有安裝的話,就把事件丟給事件過濾器(eventFilter)進行處理。
  3. 如果沒有安裝事件過濾器或者事件過濾器對該事件不進行處理的話,那麼,事件將會進一步轉發到event函數裡進行處理。

所以,在這一章節,我們同樣一步一步的分析這三個點。

事件迴圈是怎麼遍歷的?

int main(int argc, char *argv[])
{
    QApplication a(argc, argv);

    MainWindow w;
    w.show();
    return a.exec();
}

上面是一個經典的QtGUI程式的main函數,呼叫a.exec()

int QCoreApplication::exec()
{
    ...
    
    threadData->quitNow = false;
    QEventLoop eventLoop;
    self->d_func()->in_exec = true;
    self->d_func()->aboutToQuitEmitted = false;
    int returnCode = eventLoop.exec();
    
    ...
}

而看QApplication::exec的原始碼,實際上就是開啟了一個事件迴圈(QEventLoop)。同樣,我們去看QEventLoop::exec的原始碼,進一步看處理事件的步驟是什麼。

int QEventLoop::exec(ProcessEventsFlags flags)
{
    ...

    while (!d->exit.loadAcquire())
        processEvents(flags | WaitForMoreEvents | EventLoopExec);

    ref.exceptionCaught = false;
    return d->returnCode.loadRelaxed();
}

上面可以看到,QEvenLoop::exec裡,是一個while迴圈,迴圈的去呼叫processEvent,而且設定了WaitForMoreEvents就是說,如果沒有事件,就阻塞等待。

void QCoreApplication::processEvents(QEventLoop::ProcessEventsFlags flags, int ms)
{
    // ### Qt 6: consider splitting this method into a public and a private
    //           one, so that a user-invoked processEvents can be detected
    //           and handled properly.
    QThreadData *data = QThreadData::current();
    if (!data->hasEventDispatcher())
        return;
    QElapsedTimer start;
    start.start();
    while (data->eventDispatcher.loadRelaxed()->processEvents(flags & ~QEventLoop::WaitForMoreEvents)) {
        if (start.elapsed() > ms)
            break;
    }
}

閱讀processEvent,其呼叫了執行緒的事件排程器QAbstrctEventDispatcher,而這個類是一個抽象基礎類別,根據不同的平臺,有不同的實現,我們以windows下(QEventDispatcherWin32)的為例,接著分析事件處理的流程。

bool QEventDispatcherWin32::processEvents(QEventLoop::ProcessEventsFlags flags)
{
    Q_D(QEventDispatcherWin32);

	...

    // To prevent livelocks, send posted events once per iteration.
    // QCoreApplication::sendPostedEvents() takes care about recursions.
    sendPostedEvents();

    ...
}

void QEventDispatcherWin32::sendPostedEvents()
{
    Q_D(QEventDispatcherWin32);

    if (d->sendPostedEventsTimerId != 0)
        KillTimer(d->internalHwnd, d->sendPostedEventsTimerId);
    d->sendPostedEventsTimerId = 0;

    // Allow posting WM_QT_SENDPOSTEDEVENTS message.
    d->wakeUps.storeRelaxed(0);

    QCoreApplicationPrivate::sendPostedEvents(0, 0, d->threadData.loadRelaxed());
}

可以看到,事件排程器最終還是呼叫了QCoreApplicationsendPostEvents

void QCoreApplicationPrivate::sendPostedEvents(QObject *receiver, int event_type,
                                               QThreadData *data)
{
    if (event_type == -1) {
        // we were called by an obsolete event dispatcher.
        event_type = 0;
    }

    if (receiver && receiver->d_func()->threadData != data) {
        qWarning("QCoreApplication::sendPostedEvents: Cannot send "
                 "posted events for objects in another thread");
        return;
    }

    ...

    // Exception-safe cleaning up without the need for a try/catch block
    struct CleanUp {
        QObject *receiver;
        int event_type;
        QThreadData *data;
        bool exceptionCaught;

        inline CleanUp(QObject *receiver, int event_type, QThreadData *data) :
            receiver(receiver), event_type(event_type), data(data), exceptionCaught(true)
        {}
        inline ~CleanUp()
        {
            if (exceptionCaught) {
                // since we were interrupted, we need another pass to make sure we clean everything up
                data->canWait = false;
            }

            --data->postEventList.recursion;
            if (!data->postEventList.recursion && !data->canWait && data->hasEventDispatcher())
                data->eventDispatcher.loadRelaxed()->wakeUp();

            // clear the global list, i.e. remove everything that was
            // delivered.
            if (!event_type && !receiver && data->postEventList.startOffset >= 0) {
                const QPostEventList::iterator it = data->postEventList.begin();
                data->postEventList.erase(it, it + data->postEventList.startOffset);
                data->postEventList.insertionOffset -= data->postEventList.startOffset;
                Q_ASSERT(data->postEventList.insertionOffset >= 0);
                data->postEventList.startOffset = 0;
            }
        }
    };
    CleanUp cleanup(receiver, event_type, data);

    while (i < data->postEventList.size()) {
       ...

        // first, we diddle the event so that we can deliver
        // it, and that no one will try to touch it later.
        pe.event->posted = false;
        QEvent *e = pe.event;
        QObject * r = pe.receiver;

        --r->d_func()->postedEvents;
        Q_ASSERT(r->d_func()->postedEvents >= 0);

        // next, update the data structure so that we're ready
        // for the next event.
        const_cast<QPostEvent &>(pe).event = nullptr;

        locker.unlock();
        const auto relocker = qScopeGuard([&locker] { locker.lock(); });

        QScopedPointer<QEvent> event_deleter(e); // will delete the event (with the mutex unlocked)

        // after all that work, it's time to deliver the event.
        QCoreApplication::sendEvent(r, e);

        // careful when adding anything below this point - the
        // sendEvent() call might invalidate any invariants this
        // function depends on.
    }

    cleanup.exceptionCaught = false;
}

我們一個一個的分塊分析:

  1. 判斷是否在一個執行緒

    if (receiver && receiver->d_func()->threadData != data) {
        qWarning("QCoreApplication::sendPostedEvents: Cannot send "
                 "posted events for objects in another thread");
        return;
    }
    
  2. 一個有意思的異常安全的處理,不需要try/catch塊

    // Exception-safe cleaning up without the need for a try/catch block
    struct CleanUp {
        QObject *receiver;
        int event_type;
        QThreadData *data;
        bool exceptionCaught;
    
        inline CleanUp(QObject *receiver, int event_type, QThreadData *data) :
            receiver(receiver), event_type(event_type), data(data), exceptionCaught(true)
        {}
        inline ~CleanUp()
        {
            if (exceptionCaught) {
                // since we were interrupted, we need another pass to make sure we clean everything up
                data->canWait = false;
            }
    
            --data->postEventList.recursion;
            if (!data->postEventList.recursion && !data->canWait && data->hasEventDispatcher())
                data->eventDispatcher.loadRelaxed()->wakeUp();
    
            // clear the global list, i.e. remove everything that was
            // delivered.
            if (!event_type && !receiver && data->postEventList.startOffset >= 0) {
                const QPostEventList::iterator it = data->postEventList.begin();
                data->postEventList.erase(it, it + data->postEventList.startOffset);
                data->postEventList.insertionOffset -= data->postEventList.startOffset;
                Q_ASSERT(data->postEventList.insertionOffset >= 0);
                data->postEventList.startOffset = 0;
            }
        }
    };
    CleanUp cleanup(receiver, event_type, data);
    

定義了一個結構體CleanUp,結構體的解構函式(~CleanUp)儲存了函數退出時需要執行的清理操作。然後在棧上建立了一個結構體物件,遍歷事件列表時,異常退出,那麼就會呼叫自動呼叫~CleanUp的解構函式。

  1. 將事件傳送出去(sendEvent)

    while (i < data->postEventList.size()) {
           ...
    
            // first, we diddle the event so that we can deliver
            // it, and that no one will try to touch it later.
            pe.event->posted = false;
            QEvent *e = pe.event;
            QObject * r = pe.receiver;
    
            --r->d_func()->postedEvents;
            Q_ASSERT(r->d_func()->postedEvents >= 0);
    
            // next, update the data structure so that we're ready
            // for the next event.
            const_cast<QPostEvent &>(pe).event = nullptr;
    
            locker.unlock();
            const auto relocker = qScopeGuard([&locker] { locker.lock(); });
    
            QScopedPointer<QEvent> event_deleter(e); // will delete the event (with the mutex unlocked)
    
            // after all that work, it's time to deliver the event.
            QCoreApplication::sendEvent(r, e);
    
            // careful when adding anything below this point - the
            // sendEvent() call might invalidate any invariants this
            // function depends on.
        }
    

可以看到,核心還是呼叫sendEvent將事件傳送出去,而前面我們對sendEvent的原始碼分析我們可以看到,事件先是經過事件過濾器,再經過物件的event函數,來進行事件的處理。所以就引出我們的下一個話題:事件過濾器

事件過濾器

在實際應用中,我們經常要將某一個視窗部件的某個事件如滑鼠滑輪捲動攔截,然後執行我們自己想要的操作。這個時候,我們就可以用到事件過濾器(EventFilter**) **
首先,我們需要自己編寫一個eventFilter函數,

bool Class::eventFilter(QObject* watcher, QEvent* event)
{
	//以過濾滑鼠滾輪事件為例
    if (object == m_watcherObject && event->type() == QEvent::Wheel) {
    	// do something
        return true;       
    }

    QWidget::eventFilter(watcher, event);
}

然後,我們需要為要攔截的某個視窗部件,安裝事件過濾器

void Class::initUI() 
{
	QWidget* m_watcherObject = new QWidget(this);
    // 為物件安裝一個事件過濾器
	m_watcherObject->installEventFilterr(this);
}

initUI();

那麼一個物件安裝的多個事件過濾器,會以什麼樣的順序觸發呢?我們在前面的講過,後安裝的事件過濾器會先觸發,這一點,我們可以在原始碼裡得到佐證:

void QObject::installEventFilter(QObject *obj)
{
    Q_D(QObject);
    if (!obj)
        return;
    if (d->threadData != obj->d_func()->threadData) {
        qWarning("QObject::installEventFilter(): Cannot filter events for objects in a different thread.");
        return;
    }

    if (!d->extraData)
        d->extraData = new QObjectPrivate::ExtraData;

    // clean up unused items in the list
    d->extraData->eventFilters.removeAll((QObject*)nullptr);
    d->extraData->eventFilters.removeAll(obj);
    d->extraData->eventFilters.prepend(obj);
}

可以清楚的看到,事件過濾器,是以prepend的形式被新增進事件過濾器列表的。
那麼,當有滑鼠滾輪事件觸發的時候,我們可以看到sendEvent會優先走到事件過濾器裡,如果eventFilter返回一個true,那麼事件就不會被繼續派發,否則,將會將事件傳送到其他的事件過濾器裡進行處理,如果其他的事件過濾器均對該事件不進行處理,那麼事件將會繼續往下派發,走到事件的處理常式event

event

接下來,就到了事件處理的最後一站,event函數,這個函數比較簡單,我們可以自己重寫這個函數,對事件進行自定義的處理。

bool Class::event(QEvent *e)
{
    switch (e->type()) {
    case QEvent::Whell:
        // do something
        return true;

    default:
        if (e->type() >= QEvent::User) {
            customEvent(e);
            break;
        }
        return false;
    }
    return true;
}

夾帶私貨時間

  1. 之前有說到processEvent,新增一個小經驗。當我們有時候不得不在主執行緒迴圈執行很耗時的操作的時候,這個時候,介面就會重新整理不過來,就會導致介面卡頓,影響使用。但是,我們可以在這個迴圈裡,手動呼叫qApp->processEvent(),這樣就可以手動呼叫處理掉所有的事件,就可以解決卡頓的問題