MapReduce Shuffle原始碼解讀

2023-03-26 15:02:17

MapReduce Shuffle原始碼解讀

相信很多小夥伴都背過shuffle的八股文,但一直不是很理解shuffle的過程,這次我通過原始碼來解讀下shuffle過程,加深對shuffle的理解,但是我自己還是個菜鳥,這篇部落格也是參考了很多資料,如果有不對的地方,請指正。

shuffle是Map Task和 Reduce Task之間的一個階段,本質上是一個跨節點跨程序間的資料傳輸,網上的資料也把MapReduce的過程細分為六個階段:

  1. Collect 2. Spill 3.Merge 4.Copy 5.Merge 6. Sort

看過原始碼之後,這幾個階段劃分的還是很有道理的,首先看看官網上對shuffle的描述圖,有個印象

Map

首先,我們先來看看Map階段的程式碼,先找到Map Task的入口(org/apache/hadoop/mapred/MapTask.java)的run方法,當map task啟動時都會執行這個方法。

@Override
public void run(final JobConf job, final TaskUmbilicalProtocol umbilical)
  throws IOException, ClassNotFoundException, InterruptedException {
  this.umbilical = umbilical;   // 一個taskAttempt的代理,後面比較多的地方使用

  if (isMapTask()) {
    // If there are no reducers then there won't be any sort. Hence the map 
    // phase will govern the entire attempt's progress.
    if (conf.getNumReduceTasks() == 0) {
      mapPhase = getProgress().addPhase("map", 1.0f);
    } else {
      // If there are reducers then the entire attempt's progress will be 
      // split between the map phase (67%) and the sort phase (33%).
      mapPhase = getProgress().addPhase("map", 0.667f);
      sortPhase  = getProgress().addPhase("sort", 0.333f);
    }
  }

  // 啟動任務狀態彙報器,其內部有周期性的彙報執行緒(狀態彙報和心跳)
  TaskReporter reporter = startReporter(umbilical);

  boolean useNewApi = job.getUseNewMapper();
  initialize(job, getJobID(), reporter, useNewApi);  // 重要方法,可以認為初始化task啟動的一切資源了

  // check if it is a cleanupJobTask
  if (jobCleanup) {
    runJobCleanupTask(umbilical, reporter);
    return;
  }
  if (jobSetup) {
    runJobSetupTask(umbilical, reporter);
    return;
  }
  if (taskCleanup) {
    runTaskCleanupTask(umbilical, reporter);
    return;
  }

  if (useNewApi) {
    runNewMapper(job, splitMetaInfo, umbilical, reporter); // 核心程式碼,點進去
  } else {
    runOldMapper(job, splitMetaInfo, umbilical, reporter);
  }
  done(umbilical, reporter);
}

這裡umbilical比較難理解,我其實也沒怎麼搞懂,看名字是個協定,這裡貼出它的註釋

任務子程序用於聯絡其父程序的協定。父程序是一個守護行程,它輪詢中央主程序以獲取新的map或reduce Task,並將其作為子程序(Child)執行。孩子和父母之間的所有通訊都是通過此協定進行的

看起來是個RPC,這個父程序我不是很清楚,我理解是在v1版本的話,這個可能是taskTracker,如果在v2版本(yarn)可能是ApplicationMaster,如果不對,請大神解答我的疑問。

進入runNewMapper方法

@SuppressWarnings("unchecked")
private <INKEY,INVALUE,OUTKEY,OUTVALUE>
void runNewMapper(final JobConf job,
                  final TaskSplitIndex splitIndex,
                  final TaskUmbilicalProtocol umbilical,
                  TaskReporter reporter
                  ) throws IOException, ClassNotFoundException,
                           InterruptedException {
  // make a task context so we can get the classes  建立Task的上下文環境
  org.apache.hadoop.mapreduce.TaskAttemptContext taskContext =
    new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job, 
                                                                getTaskID(),
                                                                reporter);
  // make a mapper  通過反射建立mapper
  org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper =
    (org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>)
      ReflectionUtils.newInstance(taskContext.getMapperClass(), job);
  // make the input format   通過反射建立inputFormat,來讀取資料
  org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE> inputFormat =
    (org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE>)
      ReflectionUtils.newInstance(taskContext.getInputFormatClass(), job);
  // rebuild the input split // 獲取切片資訊
  org.apache.hadoop.mapreduce.InputSplit split = null;
  split = getSplitDetails(new Path(splitIndex.getSplitLocation()),
      splitIndex.getStartOffset());
  LOG.info("Processing split: " + split);

  org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input =
    new NewTrackingRecordReader<INKEY,INVALUE>   //通過反射建立RecordReader。InputFormat是通過RecordReader來讀取資料,這個也是大學問,在job submit時很關鍵
      (split, inputFormat, reporter, taskContext);
  
  job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());
  org.apache.hadoop.mapreduce.RecordWriter output = null;
  
  // get an output object
  if (job.getNumReduceTasks() == 0) { // 如果沒有reduce任務,則直接寫入磁碟
    output = 
      new NewDirectOutputCollector(taskContext, job, umbilical, reporter);
  } else { //  核心程式碼,建立collector收集器  ,點進去
    output = new NewOutputCollector(taskContext, job, umbilical, reporter);
  }

  org.apache.hadoop.mapreduce.MapContext<INKEY, INVALUE, OUTKEY, OUTVALUE> 
  mapContext = 
    new MapContextImpl<INKEY, INVALUE, OUTKEY, OUTVALUE>(job, getTaskID(), 
        input, output, 
        committer, 
        reporter, split);

  org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context 
      mapperContext = 
        new WrappedMapper<INKEY, INVALUE, OUTKEY, OUTVALUE>().getMapContext(
            mapContext);

  try {
    input.initialize(split, mapperContext);
    mapper.run(mapperContext);  // 呼叫我們自己實現的mapper類
    mapPhase.complete();
    setPhase(TaskStatus.Phase.SORT);
    statusUpdate(umbilical);
    input.close();
    input = null;
    output.close(mapperContext);
    output = null;
  } finally {
    closeQuietly(input);
    closeQuietly(output, mapperContext);
  }
}

馬上進入collect階段了,點進 NewOutputCollector,看看如何建立Collector

  private class NewOutputCollector<K,V>
    extends org.apache.hadoop.mapreduce.RecordWriter<K,V> {
    private final MapOutputCollector<K,V> collector;
    private final org.apache.hadoop.mapreduce.Partitioner<K,V> partitioner;
    private final int partitions;

    @SuppressWarnings("unchecked")
    NewOutputCollector(org.apache.hadoop.mapreduce.JobContext jobContext,
                       JobConf job,
                       TaskUmbilicalProtocol umbilical,
                       TaskReporter reporter
                       ) throws IOException, ClassNotFoundException {
      collector = createSortingCollector(job, reporter);
      partitions = jobContext.getNumReduceTasks();  // partitions數等於reduce任務數
      if (partitions > 1) {
        partitioner = (org.apache.hadoop.mapreduce.Partitioner<K,V>)
          ReflectionUtils.newInstance(jobContext.getPartitionerClass(), job);
      } else {
        partitioner = new org.apache.hadoop.mapreduce.Partitioner<K,V>() {
          @Override
          public int getPartition(K key, V value, int numPartitions) {
            return partitions - 1;
          }
        };
      }
    }

    @Override
    public void write(K key, V value) throws IOException, InterruptedException {
      collector.collect(key, value, // 向對應分割區的環形緩衝區寫入(k,v)
                        partitioner.getPartition(key, value, partitions));
    }

    @Override
    public void close(TaskAttemptContext context
                      ) throws IOException,InterruptedException {
      try {
        collector.flush();//核心方法,將資料刷出去。
      } catch (ClassNotFoundException cnf) {
        throw new IOException("can't find class ", cnf);
      }
      collector.close();
    }
  }

點進 creareSortingCollector

@SuppressWarnings("unchecked")
private <KEY, VALUE> MapOutputCollector<KEY, VALUE>  // collector是map 型別
        createSortingCollector(JobConf job, TaskReporter reporter)
  throws IOException, ClassNotFoundException {
  MapOutputCollector.Context context =
    new MapOutputCollector.Context(this, job, reporter);

  Class<?>[] collectorClasses = job.getClasses(  // 獲取Map Collector的型別
    JobContext.MAP_OUTPUT_COLLECTOR_CLASS_ATTR, MapOutputBuffer.class);  // 說到底還是MapOutputBuffer型別
  int remainingCollectors = collectorClasses.length;
  Exception lastException = null;
  for (Class clazz : collectorClasses) {
    try {
      if (!MapOutputCollector.class.isAssignableFrom(clazz)) {  // MapOutputCollector是不是clazz或者其父類別
        throw new IOException("Invalid output collector class: " + clazz.getName() +
          " (does not implement MapOutputCollector)");
      }
      Class<? extends MapOutputCollector> subclazz =
        clazz.asSubclass(MapOutputCollector.class);
      LOG.debug("Trying map output collector class: " + subclazz.getName());
      MapOutputCollector<KEY, VALUE> collector =
        ReflectionUtils.newInstance(subclazz, job); //  建立collector
      collector.init(context);   // 初始化 點進去
      LOG.info("Map output collector class = " + collector.getClass().getName());
      return collector;
    } catch (Exception e) {
      String msg = "Unable to initialize MapOutputCollector " + clazz.getName();
      if (--remainingCollectors > 0) {
        msg += " (" + remainingCollectors + " more collector(s) to try)";
      }
      lastException = e;
      LOG.warn(msg, e);
    }
  }
}

這個init方法十分的關鍵,不僅涉及了環形緩衝區,還涉及了Spill

public void init(MapOutputCollector.Context context    
                 // 這個方法中,主要就是對收集器物件進行一些初始化
                ) throws IOException, ClassNotFoundException {
  job = context.getJobConf();
  reporter = context.getReporter();
  mapTask = context.getMapTask();
  mapOutputFile = mapTask.getMapOutputFile();
  sortPhase = mapTask.getSortPhase();
  spilledRecordsCounter = reporter.getCounter(TaskCounter.SPILLED_RECORDS);
  partitions = job.getNumReduceTasks();
  rfs = ((LocalFileSystem)FileSystem.getLocal(job)).getRaw();

  //sanity checks
  final float spillper =
    job.getFloat(JobContext.MAP_SORT_SPILL_PERCENT, (float)0.8);  // 設定環形緩衝區溢寫比例為0.8
  final int sortmb = job.getInt(MRJobConfig.IO_SORT_MB,
      MRJobConfig.DEFAULT_IO_SORT_MB);  //  預設環形緩衝區大小為100M
  indexCacheMemoryLimit = job.getInt(JobContext.INDEX_CACHE_MEMORY_LIMIT,
                                     INDEX_CACHE_MEMORY_LIMIT_DEFAULT);
  if (spillper > (float)1.0 || spillper <= (float)0.0) {
    throw new IOException("Invalid \"" + JobContext.MAP_SORT_SPILL_PERCENT +
        "\": " + spillper);
  }
  if ((sortmb & 0x7FF) != sortmb) {
    throw new IOException(
        "Invalid \"" + JobContext.IO_SORT_MB + "\": " + sortmb);
  }

  // 排序,預設使用的快排
  // 獲取到排序物件,在資料由環形緩衝區溢寫到磁碟中前
  // 並且排序是針對索引的,並非對資料進行排序。
  sorter = ReflectionUtils.newInstance(job.getClass(
               MRJobConfig.MAP_SORT_CLASS, QuickSort.class,
               IndexedSorter.class), job);
  // buffers and accounting
  // 對環形緩衝區初始化,大名鼎鼎的環形緩衝區本質上是個byte陣列
  int maxMemUsage = sortmb << 20;  // 將MB轉換為Bytes
  // 一對kv資料有四個後設資料MATE,分別是valstart,keystart,partitions,vallen,都是int型別
  // METASIZE 就是4個int轉換成byte就是4*4
  maxMemUsage -= maxMemUsage % METASIZE;  // 計算METE資料儲存的大小
  kvbuffer = new byte[maxMemUsage]; // 後設資料陣列  以byte為單位
  bufvoid = kvbuffer.length;
  kvmeta = ByteBuffer.wrap(kvbuffer)
     .order(ByteOrder.nativeOrder())
     .asIntBuffer();  // 將byte單位的kvbuffer轉換成int單位的kvmeta
  setEquator(0);
  bufstart = bufend = bufindex = equator;
  kvstart = kvend = kvindex;
  // kvmeta中存放後設資料實體的最大個數
  maxRec = kvmeta.capacity() / NMETA;
  softLimit = (int)(kvbuffer.length * spillper); // buffer 溢寫的閾值
  bufferRemaining = softLimit;
  LOG.info(JobContext.IO_SORT_MB + ": " + sortmb);
  LOG.info("soft limit at " + softLimit);
  LOG.info("bufstart = " + bufstart + "; bufvoid = " + bufvoid);
  LOG.info("kvstart = " + kvstart + "; length = " + maxRec);

  // k/v serialization
  comparator = job.getOutputKeyComparator();
  keyClass = (Class<K>)job.getMapOutputKeyClass();
  valClass = (Class<V>)job.getMapOutputValueClass();
  serializationFactory = new SerializationFactory(job);
  keySerializer = serializationFactory.getSerializer(keyClass);
  keySerializer.open(bb);  // 將key寫入bb中 blockingbuffer
  valSerializer = serializationFactory.getSerializer(valClass);
  valSerializer.open(bb); // 將value寫入bb中

  // output counters
  mapOutputByteCounter = reporter.getCounter(TaskCounter.MAP_OUTPUT_BYTES);
  mapOutputRecordCounter =
    reporter.getCounter(TaskCounter.MAP_OUTPUT_RECORDS);
  fileOutputByteCounter = reporter
      .getCounter(TaskCounter.MAP_OUTPUT_MATERIALIZED_BYTES);

  // compression  壓縮器,減少shuffle資料量
  if (job.getCompressMapOutput()) {
    Class<? extends CompressionCodec> codecClass =
      job.getMapOutputCompressorClass(DefaultCodec.class);
    codec = ReflectionUtils.newInstance(codecClass, job);
  } else {
    codec = null;
  }

  // combiner
  // combiner  map端的reduce
  final Counters.Counter combineInputCounter =
    reporter.getCounter(TaskCounter.COMBINE_INPUT_RECORDS);
  combinerRunner = CombinerRunner.create(job, getTaskID(), 
                                         combineInputCounter,
                                         reporter, null);
  if (combinerRunner != null) {
    final Counters.Counter combineOutputCounter =
      reporter.getCounter(TaskCounter.COMBINE_OUTPUT_RECORDS);
    combineCollector= new CombineOutputCollector<K,V>(combineOutputCounter, reporter, job);
  } else {
    combineCollector = null;
  }
  // 溢寫執行緒
  spillInProgress = false;
  minSpillsForCombine = job.getInt(JobContext.MAP_COMBINE_MIN_SPILLS, 3);
  spillThread.setDaemon(true); //  是個守護執行緒
  spillThread.setName("SpillThread"); //
  spillLock.lock();
  try {
    spillThread.start();  // 啟動一個spill執行緒
    while (!spillThreadRunning) {
      spillDone.await();
    }
  } catch (InterruptedException e) {
    throw new IOException("Spill thread failed to initialize", e);
  } finally {
    spillLock.unlock();
  }
  if (sortSpillException != null) {
    throw new IOException("Spill thread failed to initialize",
        sortSpillException);
  }
}

從這個類,我們可以看到環形緩衝區的一些初始化過程,如大小為100M,開始溢寫的比例是0.8,實際上,Collector是一個宏觀的概念,本質上就是一個MapOutputBuffer物件。

後面還啟動了Spill執行緒,不過如果是第一次進去會被阻塞這裡我們先按下不表。

至此,一些map開始之前的工作已經準備好了,至於它是怎麼工作的我們可以從我們寫的mapper中write方法debug進去,發現其實還是NewOutputCollector中定義的write方法,點進去是MapOutputBuffer的collect方法

public synchronized void collect(K key, V value, final int partition
                                 ) throws IOException {
  reporter.progress();
  if (key.getClass() != keyClass) {
    throw new IOException("Type mismatch in key from map: expected "
                          + keyClass.getName() + ", received "
                          + key.getClass().getName());
  }
  if (value.getClass() != valClass) {
    throw new IOException("Type mismatch in value from map: expected "
                          + valClass.getName() + ", received "
                          + value.getClass().getName());
  }
  if (partition < 0 || partition >= partitions) {
    throw new IOException("Illegal partition for " + key + " (" +
        partition + ")");
  }
  checkSpillException();
  bufferRemaining -= METASIZE;  // 新資料collect時,先將後設資料長度前去,之後判斷
  if (bufferRemaining <= 0) { // 說明已經超過閾值了
    // start spill if the thread is not running and the soft limit has been
    // reached
    spillLock.lock();
    try {
      do {
        // 首次spill時,spillInProgress是false
        if (!spillInProgress) {
          final int kvbidx = 4 * kvindex; // 單位是byte
          final int kvbend = 4 * kvend;  // 單位是byte
          // serialized, unspilled bytes always lie between kvindex and
          // bufindex, crossing the equator. Note that any void space
          // created by a reset must be included in "used" bytes
          final int bUsed = distanceTo(kvbidx, bufindex);  // 剩下可以寫入的空間大小
          final boolean bufsoftlimit = bUsed >= softLimit;  // true說明已經超過softLimit了
          if ((kvbend + METASIZE) % kvbuffer.length !=
              equator - (equator % METASIZE)) {
            // spill finished, reclaim space
            resetSpill();
            bufferRemaining = Math.min(
                distanceTo(bufindex, kvbidx) - 2 * METASIZE,
                softLimit - bUsed) - METASIZE;  // 這裡是重新選擇equator吧,但是計算方式不瞭解
            continue;
          } else if (bufsoftlimit && kvindex != kvend) {
            // spill records, if any collected; check latter, as it may
            // be possible for metadata alignment to hit spill pcnt
            startSpill();  //開始溢寫,裡面喚醒spill執行緒  
            final int avgRec = (int)
              (mapOutputByteCounter.getCounter() /
              mapOutputRecordCounter.getCounter());
            // leave at least half the split buffer for serialization data
            // ensure that kvindex >= bufindex
            final int distkvi = distanceTo(bufindex, kvbidx);
            final int newPos = (bufindex +
              Math.max(2 * METASIZE - 1,
                      Math.min(distkvi / 2,
                               distkvi / (METASIZE + avgRec) * METASIZE)))
              % kvbuffer.length;
            setEquator(newPos);
            bufmark = bufindex = newPos;
            final int serBound = 4 * kvend;
            // bytes remaining before the lock must be held and limits
            // checked is the minimum of three arcs: the metadata space, the
            // serialization space, and the soft limit
            bufferRemaining = Math.min(
                // metadata max
                distanceTo(bufend, newPos),
                Math.min(
                  // serialization max
                  distanceTo(newPos, serBound),
                  // soft limit
                  softLimit)) - 2 * METASIZE;
          }
        }
      } while (false);   // 這是什麼寫法?????
    } finally {
      spillLock.unlock();
    }
  }
  // 直接寫入buffer,不涉及spill
  try {
    // serialize key bytes into buffer
    int keystart = bufindex;
    keySerializer.serialize(key);
    // key所佔空間被bufvoid分隔,則移動key,
    // 將其值放在連續的空間中便於sort時key的對比
    if (bufindex < keystart) {
      // wrapped the key; must make contiguous
      bb.shiftBufferedKey();
      keystart = 0;
    }
    // serialize value bytes into buffer
    final int valstart = bufindex;
    valSerializer.serialize(value);
    // It's possible for records to have zero length, i.e. the serializer
    // will perform no writes. To ensure that the boundary conditions are
    // checked and that the kvindex invariant is maintained, perform a
    // zero-length write into the buffer. The logic monitoring this could be
    // moved into collect, but this is cleaner and inexpensive. For now, it
    // is acceptable.
    bb.write(b0, 0, 0);

    // the record must be marked after the preceding write, as the metadata
    // for this record are not yet written
    int valend = bb.markRecord();

    mapOutputRecordCounter.increment(1);
    mapOutputByteCounter.increment(
        distanceTo(keystart, valend, bufvoid)); //計數器+1

    // write accounting info
    kvmeta.put(kvindex + PARTITION, 
              );
    kvmeta.put(kvindex + KEYSTART, keystart);
    kvmeta.put(kvindex + VALSTART, valstart);
    kvmeta.put(kvindex + VALLEN, distanceTo(valstart, valend));
    // advance kvindex
    kvindex = (kvindex - NMETA + kvmeta.capacity()) % kvmeta.capacity();
  } catch (MapBufferTooSmallException e) {
    LOG.info("Record too large for in-memory buffer: " + e.getMessage());
    spillSingleRecord(key, value, partition);  // 長record就直接寫入磁碟
    mapOutputRecordCounter.increment(1);
    return;
  }
}

這裡首先最重要的方法就是第46行的startSpill()方法,這裡點進去會發現一個spillReady.signal(),這就是喚醒之前因spillReady.await()方法阻塞的spill執行緒,這裡的spillReady就是可重入鎖,這裡spill開始正式工作,這裡涉及了環形緩衝區如何寫和如何讀,會比較抽象,我之後再寫一篇關於環形緩衝區的文章。

這裡程式碼就是Collect,本質上就是map端將輸出的(k,v)資料和它的後設資料寫入MapOutputBuffer中。

此外,這個程式碼裡也有喚醒spill執行緒的程式碼,找到SpillThread的run方法,很明顯裡面有個很重要的方法sortAndSpill

private void sortAndSpill() throws IOException, ClassNotFoundException,
                                   InterruptedException {
  //approximate the length of the output file to be the length of the
  //buffer + header lengths for the partitions
  final long size = distanceTo(bufstart, bufend, bufvoid) +
              partitions * APPROX_HEADER_LENGTH;  // 寫出長度
  FSDataOutputStream out = null;
  FSDataOutputStream partitionOut = null;
  try {
    // create spill file
    final SpillRecord spillRec = new SpillRecord(partitions);
    final Path filename =
        mapOutputFile.getSpillFileForWrite(numSpills, size);// 預設是output/spillx.out
    out = rfs.create(filename);// 建立分割區檔案

    final int mstart = kvend / NMETA;
    final int mend = 1 + // kvend is a valid record
      (kvstart >= kvend
      ? kvstart
      : kvmeta.capacity() + kvstart) / NMETA;
    // 對後設資料進行排序,先按照partition進行排序,再按照key值進行排序
    // 二次排序,排的是後設資料部分
    sorter.sort(MapOutputBuffer.this, mstart, mend, reporter);
    int spindex = mstart;
    final IndexRecord rec = new IndexRecord();
    final InMemValBytes value = new InMemValBytes();
    for (int i = 0; i < partitions; ++i) {//迴圈分割區
      // 溢寫時的臨時檔案 型別是IFile
      IFile.Writer<K, V> writer = null;
      try {
        long segmentStart = out.getPos();
        partitionOut = CryptoUtils.wrapIfNecessary(job, out, false);
        writer = new Writer<K, V>(job, partitionOut, keyClass, valClass, codec,
                                  spilledRecordsCounter);
        if (combinerRunner == null) {
          // spill directly
          DataInputBuffer key = new DataInputBuffer();
          // 寫入相同的partition資料
          while (spindex < mend &&
              kvmeta.get(offsetFor(spindex % maxRec) + PARTITION) == i) {
            final int kvoff = offsetFor(spindex % maxRec);
            int keystart = kvmeta.get(kvoff + KEYSTART);
            int valstart = kvmeta.get(kvoff + VALSTART);
            key.reset(kvbuffer, keystart, valstart - keystart);
            getVBytesForOffset(kvoff, value);
            writer.append(key, value);
            ++spindex;
          }
        } else {    // 進行combiner,避免小檔案問題
          int spstart = spindex;
          while (spindex < mend &&
              kvmeta.get(offsetFor(spindex % maxRec)
                        + PARTITION) == i) {
            ++spindex;
          }
          // Note: we would like to avoid the combiner if we've fewer
          // than some threshold of records for a partition
          if (spstart != spindex) {
            combineCollector.setWriter(writer);
            RawKeyValueIterator kvIter =
              new MRResultIterator(spstart, spindex);
            combinerRunner.combine(kvIter, combineCollector);
          }
        }

        // close the writer
        writer.close();  ///  將檔案寫入本地磁碟中,不是HDFS上
        if (partitionOut != out) {
          partitionOut.close();
          partitionOut = null;
        }

        // record offsets
        // 記錄當前partition i的資訊寫入索檔案rec中
        rec.startOffset = segmentStart;
        rec.rawLength = writer.getRawLength() + CryptoUtils.cryptoPadding(job);
        rec.partLength = writer.getCompressedLength() + CryptoUtils.cryptoPadding(job);
        //spillRec中存放了spill中partition的資訊
        spillRec.putIndex(rec, i);

        writer = null;
      } finally {
        if (null != writer) writer.close();
      }
    }

    if (totalIndexCacheMemory >= indexCacheMemoryLimit) {
      // create spill index file
      Path indexFilename =
          mapOutputFile.getSpillIndexFileForWrite(numSpills, partitions
              * MAP_OUTPUT_INDEX_RECORD_LENGTH);
      spillRec.writeToFile(indexFilename, job);  // 將記憶體中的index檔案寫入磁碟
    } else {
      indexCacheList.add(spillRec);
      totalIndexCacheMemory +=
        spillRec.size() * MAP_OUTPUT_INDEX_RECORD_LENGTH;
    }
    LOG.info("Finished spill " + numSpills);
    ++numSpills;
  } finally {
    if (out != null) out.close();
    if (partitionOut != null) {
      partitionOut.close();
    }
  }
}

很明顯,spill有兩個臨時檔案生成,一個是(k,v)檔案,它儲存在預設路徑是output/spill{x}.out檔案中,注意,這段程式碼裡並沒有明顯的將(k,v)檔案寫入磁碟的程式碼,這些程式碼在writer.close()中實現。而另一個明顯寫入磁碟的是spillRec.writeToFile(indexFilename, job),這個存放的每個partition的index。

在SpillThread在辛辛苦苦進行sortAndSpill工作時,map Task 也不斷地產生新(k,v)寫入MapOutputBuffer中,環形緩衝區的讀執行緒和寫執行緒同時工作!!怎麼避免衝突呢?答案是反向寫。

紅色箭頭是寫(k,v)資料,藍色箭頭是寫後設資料,紫色是預留的百分之20的空間不能寫,綠色是已經寫入的資料部分,正在被spill執行緒讀取操作。

至此,spillsort階段算是大功告成,那麼還有個疑問,如果MapOutPutBuffer還有部分資料,但這部分資料並沒有達到spill的標準,怎麼辦呢?還是回到NewOutputCollector部分中close方法,裡面有MapOutputBuffer的flush方法會解決這個問題。

最後就是Map Task中Shuffle過程的最後一個階段Merge,這部分有點多就不貼程式碼了,感興趣的同學可以檢視MapOutputBuffer中mergeParts方法,這個方法在上面的flush方法裡呼叫,該作用是合併spill階段產生出來的out檔案和index檔案。

Merge過程目的很簡單,但是過程確實很複雜。首先,Merge過程會掃描目錄獲取out檔案的地址,存放一個陣列中,同時也會獲得index檔案,存放到另一個陣列中。好奇的同學可能再想既然又要讀入到記憶體中,當初為啥要刷進磁碟裡呢,這不是閒著沒事幹嘛,確實,這是MapReduce的缺陷,太過於批次處理了,磁碟IO也限制了它的其他可能性,比如機器學習需要反覆迭代,MapReduce就做不了這個,但是這一步確實很有必要的,因為早期記憶體很貴,不是每個人都是土豪的,考慮到OOM的風險,把所有的(K,V)資料和index資料刷進磁碟是非常有必要的,但是後面又可以全讀入記憶體,那是因為快取緩衝區這個大東西已經不再使用,記憶體就富裕起來了。

同時,Merge過程還涉及到歸併演演算法,這個並不是簡單的歸併過程,而是一個很複雜的過程,因為考慮到一個partition並不只存在一種key,所以原始碼裡有著相當複雜的過程同時註釋也很迷惑人,註釋裡有優先佇列和Heap的字樣,看程式碼的時候可能以為採用了堆排序,有興趣的同學可以看看,並不是太重要(ps我也看得一知半解)。

Reduce

Reduce部分我就長話短說,只看重點了。

同樣,第一步就是檢視 Reduce Task的run方法,這是啟動redduce邏輯的自動過程

 public void run(JobConf job, final TaskUmbilicalProtocol umbilical)
   throws IOException, InterruptedException, ClassNotFoundException {
   job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());

   if (isMapOrReduce()) { // reduce的三個階段
     copyPhase = getProgress().addPhase("copy");
     sortPhase  = getProgress().addPhase("sort");
     reducePhase = getProgress().addPhase("reduce");
   }
   // start thread that will handle communication with parent
   // 啟動任務狀態彙報器,其內部有周期性的彙報執行緒(狀態彙報和心跳)
   TaskReporter reporter = startReporter(umbilical);
   
   boolean useNewApi = job.getUseNewReducer();
   initialize(job, getJobID(), reporter, useNewApi);//核心程式碼,初始化任務

   // check if it is a cleanupJobTask
   if (jobCleanup) {
     runJobCleanupTask(umbilical, reporter);
     return;
   }
   if (jobSetup) {
     runJobSetupTask(umbilical, reporter);
     return;
   }
   if (taskCleanup) {
     runTaskCleanupTask(umbilical, reporter);
     return;
   }
   
   // Initialize the codec
   codec = initCodec();
   RawKeyValueIterator rIter = null;
   ShuffleConsumerPlugin shuffleConsumerPlugin = null;
   
   Class combinerClass = conf.getCombinerClass();
   CombineOutputCollector combineCollector = 
     (null != combinerClass) ? 
    new CombineOutputCollector(reduceCombineOutputCounter, reporter, conf) : null;

   Class<? extends ShuffleConsumerPlugin> clazz =
         job.getClass(MRConfig.SHUFFLE_CONSUMER_PLUGIN, Shuffle.class, ShuffleConsumerPlugin.class);
// 設定shuffle外掛
   shuffleConsumerPlugin = ReflectionUtils.newInstance(clazz, job);
   LOG.info("Using ShuffleConsumerPlugin: " + shuffleConsumerPlugin);

   ShuffleConsumerPlugin.Context shuffleContext = 
     new ShuffleConsumerPlugin.Context(getTaskID(), job, FileSystem.getLocal(job), umbilical, 
                 super.lDirAlloc, reporter, codec, 
                 combinerClass, combineCollector, 
                 spilledRecordsCounter, reduceCombineInputCounter,
                 shuffledMapsCounter,
                 reduceShuffleBytes, failedShuffleCounter,
                 mergedMapOutputsCounter,
                 taskStatus, copyPhase, sortPhase, this,
                 mapOutputFile, localMapFiles);
   shuffleConsumerPlugin.init(shuffleContext);
   // 執行shuffle過程中的遠端資料拉取,在拉取的過程中
   // 內部 啟動 map-completion event fetch執行緒 獲取map端完成的event資訊
   // 在開啟預設5個的fetch 執行緒 拉取資料,裡面核心函數就是一直點進去是doShuffle,有兩種一種是in-memory另一種就是on-disk
   // 超出shuffle記憶體就merge到disk
   // shuffle外掛內部有個mergeMangager 會在合適的時候就是快超過shuffle記憶體快取的時候,啟動merge執行緒

   // 這個表面是一次網路IO,本質上是一個RPC,通過umbilical代理獲取已經完成的MapTask任務的taskAttempt的ID,存入schedule中,為後面shuffle做準備

   rIter = shuffleConsumerPlugin.run();

   // free up the data structures
   // 一個sort set,是TreeSet資料結構·
   mapOutputFilesOnDisk.clear();
   
   sortPhase.complete();                         // sort is complete
   setPhase(TaskStatus.Phase.REDUCE); 
   statusUpdate(umbilical);
   Class keyClass = job.getMapOutputKeyClass();
   Class valueClass = job.getMapOutputValueClass();
   RawComparator comparator = job.getOutputValueGroupingComparator();

   if (useNewApi) {
     runNewReducer(job, umbilical, reporter, rIter, comparator, 
                   keyClass, valueClass); // 執行reduce操作,(使用者定義的邏輯)
   } else {
     runOldReducer(job, umbilical, reporter, rIter, comparator, 
                   keyClass, valueClass);
   }

   shuffleConsumerPlugin.close();
   done(umbilical, reporter);
 }

Reduce Task的重點比較清晰,就是57行的初始化shuffleConsumerPlugin這個Shuffle外掛,以及66行執行這個外掛,讓他拉取資料。

初始化shuffle外掛過程中,有兩個元件一個是schedule排程器,另一個就是MergeManager,這個MergeManger有大用處。

接下來檢視run方法

public RawKeyValueIterator run() throws IOException, InterruptedException {
  // Scale the maximum events we fetch per RPC call to mitigate OOM issues
  // on the ApplicationMaster when a thundering herd of reducers fetch events
  // TODO: This should not be necessary after HADOOP-8942
  int eventsPerReducer = Math.max(MIN_EVENTS_TO_FETCH,
      MAX_RPC_OUTSTANDING_EVENTS / jobConf.getNumReduceTasks());
  int maxEventsToFetch = Math.min(MAX_EVENTS_TO_FETCH, eventsPerReducer);

  // Start the map-completion events fetcher thread
  // 啟動 一個 event fetcher執行緒 獲取map端完成的event資訊
  final EventFetcher<K,V> eventFetcher = 
    new EventFetcher<K,V>(reduceId, umbilical, scheduler, this,
        maxEventsToFetch);
  eventFetcher.start();
  
  // Start the map-output fetcher threads  啟動fetch執行緒
  // fetch 執行緒 遠端從map端拉取對應partition的資料
  boolean isLocal = localMapFiles != null;
  final int numFetchers = isLocal ? 1 :
    jobConf.getInt(MRJobConfig.SHUFFLE_PARALLEL_COPIES, 5);
  Fetcher<K,V>[] fetchers = new Fetcher[numFetchers];
  if (isLocal) {
    fetchers[0] = new LocalFetcher<K, V>(jobConf, reduceId, scheduler,
        merger, reporter, metrics, this, reduceTask.getShuffleSecret(),
        localMapFiles);
    fetchers[0].start();
  } else {
    for (int i=0; i < numFetchers; ++i) {
      fetchers[i] = new Fetcher<K,V>(jobConf, reduceId, scheduler, merger, 
                                     reporter, metrics, this, 
                                     reduceTask.getShuffleSecret());
      fetchers[i].start();
    }
  }
  
  // Wait for shuffle to complete successfully
  while (!scheduler.waitUntilDone(PROGRESS_FREQUENCY)) {
    reporter.progress();
    
    synchronized (this) {
      if (throwable != null) {
        throw new ShuffleError("error in shuffle in " + throwingThreadName,
                               throwable);
      }
    }
  }

  // Stop the event-fetcher thread
  eventFetcher.shutDown();
  
  // Stop the map-output fetcher threads
  for (Fetcher<K,V> fetcher : fetchers) {
    fetcher.shutDown();
  }
  
  // stop the scheduler
  scheduler.close();

  copyPhase.complete(); // copy is already complete
  taskStatus.setPhase(TaskStatus.Phase.SORT);
  reduceTask.statusUpdate(umbilical);

  // Finish the on-going merges...
  RawKeyValueIterator kvIter = null;
  try {
    kvIter = merger.close();
  } catch (Throwable e) {
    throw new ShuffleError("Error while doing final merge " , e);
  }

  // Sanity check
  synchronized (this) {
    if (throwable != null) {
      throw new ShuffleError("error in shuffle in " + throwingThreadName,
                             throwable);
    }
  }
  
  return kvIter;
}

重點就是兩執行緒,一種是Event fetch,另一種是fetch執行緒

首先,event fetch執行緒的作用是獲取TaskAttempt的ID等資訊,存入schedule中,方面以後Shuffle尤其是sort時使用,本質上這是個RPC,注意看event fetch初始化時的引數裡有個umbilical代理物件。

而fetch執行緒的工作原理是通過HTTP向各個Map任務拖取它所需要的資料(至於HTTP和RPC的區別有興趣的同學可以查查),裡面最核心的方法是doShuffle(一直點進去才能找到這個),在Copy的同時還會MergeSort。doShuffle它有兩個實現,一個是In-memory,另一個是On-disk有兩個實現(同樣的,Merge也分為這兩種)。是基於考慮到拉取相同的key值可能有很大的資料量,那麼有必要寫入磁碟中了,但為了減少這種情況,在達到快取區(預設是64K)閾值的時候會將資料merge(如果太大的話就在磁碟中merge),Merge的工作就是交給Shuffle外掛的MergeManager管理。

所以,copy和Merge和Sort是重疊過程的。

至此,Shuffle部分的原始碼基本講解完成。

參考資料

  1. MapReduce ReduceTask原始碼解析

  2. MapReduce中的shuffle詳解

  3. 環形緩衝區