LeetCode 周賽 335,純純手速場!

2023-03-06 06:00:47

本文已收錄到 AndroidFamily,技術和職場問題,請關注公眾號 [彭旭銳] 提問。

大家好,我是小彭。

昨晚是 LeetCode 第 335 場周賽,你參加了嗎?這場周賽整體難度不高,有兩道模板題,第三題和第四題應該調換一下位置。


小彭的 Android 交流群 02 群來了,公眾號回覆 「加群」 加入我們~



2582. 遞枕頭(Easy)

題目地址

https://leetcode.cn/problems/pass-the-pillow/

題目描述

n 個人站成一排,按從 1 到 n 編號。

最初,排在隊首的第一個人拿著一個枕頭。每秒鐘,拿著枕頭的人會將枕頭傳遞給隊伍中的下一個人。一旦枕頭到達隊首或隊尾,傳遞方向就會改變,隊伍會繼續沿相反方向傳遞枕頭。

  • 例如,當枕頭到達第 n 個人時,TA 會將枕頭傳遞給第 n - 1 個人,然後傳遞給第 n - 2 個人,依此類推。

給你兩個正整數 n 和 time ,返回 t

題解一(模擬)

簡單模擬題。

class Solution {
    fun passThePillow(n: Int, time: Int): Int {
        var index = 1
        var flag = true
        for (count in 0 until time) {
            if (flag) {
                if (++index == n) flag = !flag
            } else {
                if (--index == 1) flag = !flag
            }
        }
        return index
    }
}

複雜度分析:

  • 時間複雜度:$O(time)$
  • 空間複雜度:$O(1)$

題解二(數學)

以 n = 4 為例,顯然每 n - 1 次傳遞為一輪,則有 time % (n - 1) 分辨出奇數輪 / 偶數輪。其中偶數輪是正向傳遞,奇數輪是逆向傳遞。

  • 偶數輪:2 → 3 → 4,time = 1 時傳遞到 2 號;
  • 奇數輪:3 → 2 → 1。
class Solution {
    fun passThePillow(n: Int, time: Int): Int {
        val mod = n - 1
        return if (time / mod % 2 == 0) {
            (time % mod) + 1
        } else {
            n - (time % mod)
        }
    }
}

複雜度分析:

  • 時間複雜度:$O(1)$
  • 空間複雜度:$O(1)$

2583. 二元樹中的第 K 大層和(Medium)

題目地址

https://leetcode.cn/problems/kth-largest-sum-in-a-binary-tree/

題目描述

給你一棵二元樹的根節點 root 和一個正整數 k 。

樹中的 層和 是指 同一層 上節點值的總和。

返回樹中第 k 大的層和(不一定不同)。如果樹少於 k 層,則返回 -1 。

注意,如果兩個節點與根節點的距離相同,則認為它們在同一層。

題解(BFS + 堆)

BFS 模板題,使用小頂堆記錄最大的 k 個數。

class Solution {
    fun kthLargestLevelSum(root: TreeNode?, k: Int): Long {
        if (null == root) return 0L
        val heap = PriorityQueue<Long>()

        // BFS
        val queue = LinkedList<TreeNode>()
        queue.offer(root)
        while (!queue.isEmpty()) {
            var levelSum = 0L
            for (count in 0 until queue.size) {
                val node = queue.poll()
                levelSum += node.`val`
                if (null != node.left) {
                    queue.offer(node.left)
                }
                if (null != node.right) {
                    queue.offer(node.right)
                }
            }
            if (heap.size < k) {
                heap.offer(levelSum)
            } else if (heap.peek() < levelSum) {
                heap.poll()
                heap.offer(levelSum)
            }
        }

        return if (heap.size >= k) heap.peek() else -1L
    }
}

複雜度分析:

  • 時間複雜度:$O(nlgk)$ 其中 $n$ 是節點數。二元樹每個節點最多入隊一次,二元樹最大有 $n$ 層,小頂堆維護 $k$ 個數的時間複雜度為 $O(nlgk)$;
  • 空間複雜度:$O(n)$ 小頂堆空間 $O(k)$,遞迴棧空間最大 $O(n)$。

2584. 分割陣列使乘積互質(Medium)

題目地址

https://leetcode.cn/problems/split-the-array-to-make-coprime-products/

題目描述

給你一個長度為 n 的整數陣列 nums ,下標從 0 開始。

如果在下標 i 處 分割 陣列,其中 0 <= i <= n - 2 ,使前 i + 1 個元素的乘積和剩餘元素的乘積互質,則認為該分割 有效 。

  • 例如,如果 nums = [2, 3, 3] ,那麼在下標 i = 0 處的分割有效,因為 2 和 9 互質,而在下標 i = 1 處的分割無效,因為 6 和 3 不互質。在下標 i = 2 處的分割也無效,因為 i == n - 1 。

返回可以有效分割陣列的最小下標 i ,如果不存在有效分割,則返回 -1 。

當且僅當 gcd(val1, val2) == 1 成立時,val1 和 val2 這兩個值才是互質的,其中 gcd(val1, val2) 表示 val1 和 val2 的最大公約數。

題解(質因子分解)

這道題是這場周賽中最複雜的題目,應該放在 T4。

因為多個數相乘的結果會溢位(如果題目中存在 0 還會干擾),所以這道題不能用前字尾分解的思路。 比較容易想到的思路是做質因子分解:顯然合法分割數點的左右兩邊不能有公共質因子,否則子集的乘積必然是非互質的。

舉個例子,在陣列 [1, 2, 3, 2, 5] 中,將質因子 2 劃分到不同子集的方案是錯誤的:

  • [1 | 2, 3, 2, 5]:錯誤分割
  • [1 , 2 | 3, 2, 5]:正確分割
  • [1 , 2, 3 | 2, 5]:正確分割
  • [1 , 2, 3, 2 | 5]:錯誤分割

腦海中有閃現過狀態壓縮,但題目輸入資料較大無法實現,只能有雜湊表記錄質因子資訊。因此我們的演演算法是:先對 nums 陣列中的每個元素做質因數分解,然後列舉所有分割點,統計左右子集中質因子的出現次數。如果出現同一個質因子再左右子集中的出現次數同時大於 1,說明分割點不成立。

class Solution {
    fun findValidSplit(nums: IntArray): Int {
        val n = nums.size
        // 質因子計數
        val leftCount = HashMap<Int, Int>()
        val rightCount = HashMap<Int, Int>()
        // 質因子分解
        val primeMap = HashMap<Int, HashSet<Int>>()
        for (num in nums) {
            // 對 num 做質因數分解
            primeMap[num] = HashSet<Int>()
            var x = num
            var prime = 2
            while (prime * prime <= x) {
                if (x % prime == 0) {
                    // 發現質因子
                    primeMap[num]!!.add(prime)
                    rightCount[prime] = rightCount.getOrDefault(prime, 0) + 1
                    // 消除所有 prime 因子
                    while (x % prime == 0) x /= prime
                }
                prime++
            }
            if(x > 1) {
                // 剩下的質因子
                primeMap[num]!!.add(x)
                rightCount[x] = rightCount.getOrDefault(x, 0) + 1 
            }
        }
        // 列舉分割點
        outer@ for (index in 0..n - 2) {
            for (prime in primeMap[nums[index]]!!) {
                leftCount[prime] = leftCount.getOrDefault(prime, 0) + 1
                rightCount[prime] = rightCount[prime]!! - 1
            }
            for ((prime, count) in leftCount) {
                if (rightCount[prime]!! != 0) continue@outer
            }
            return index
        }
        return -1
    }
}

複雜度分析:

  • 時間複雜度:$O(n\sqrt{U}+n·m)$ 其中 $n$ 是 $nums$ 陣列的長度,U 是陣列元素的最大值,$m$ 是 $U$ 範圍內的質數個數 $\frac{U}{logU}$ 。時間複雜度分為兩部分,質因數分解佔用 $O(n\sqrt{U})$,列舉分割點的每輪迴圈需要列舉所有質數,佔用 $O(n·m)$;
  • 空間複雜度:$O(n·m + m)$ 質因子分解對映表和計數表。

題解二(質因數分解 + 合併區間)

思路來源:靈茶山艾符的題解

統計每種質因子在陣列中出現的起始位置 left 和終止位置 right,如果分割點位於 [left, right) 區間,那麼左右兩子集一定會存在公共質因子。

因此我們的演演算法是:將質數的分佈看成一個連續區間,按照區間起始位置對所有區間排序。遍歷區間並維護最大區間終止位置 preEnd,如果當前區間與 preEnd 不連續,則說明以當前位置為分割點的方案不會拆分割區間,也就找到目標答案。

如果按照這個思路理解,這道題本質上和 55. 跳躍遊戲 類似。

class Solution {
    fun findValidSplit(nums: IntArray): Int {
        // 質因子區間 <首次出現位置,末次出現位置>
        val primeMap = HashMap<Int, IntArray>()
        // 質因數分解
        for ((index, num) in nums.withIndex()) {
            // 對 num 做質因數分解
            var x = num
            var prime = 2
            while (prime * prime <= x) {
                if (x % prime == 0) {
                    // 發現質因子
                    primeMap.getOrPut(prime) { intArrayOf(index, index) }[1] = index
                    // 消除所有 prime 因子
                    while (x % prime == 0) x /= prime
                }
                prime++
            }
            if (x > 1) {
                // 剩下的質因子
                primeMap.getOrPut(x) { intArrayOf(index, index) }[1] = index
            }
        }
        // 區間排序
        val areaList = primeMap.values.toMutableList()
        Collections.sort(areaList) { e1, e2 ->
            e1[0] - e2[0]
        }
        // 列舉區間
        var preEnd = 0
        for (area in areaList) {
            if (area[0] > preEnd) return area[0] - 1
            preEnd = Math.max(preEnd, area[1])
        }
        return -1
    }
}

複雜度分析:

  • 時間複雜度:$O(n\sqrt{U}+mlgm+m)$ 質因數分解時間 $O(n\sqrt{U})$,排序時間 $O(mlgm)$,列舉區間時間 $O(m)$;
  • 空間複雜度:$O(m + lgm)$ 質因子區間陣列佔用 $O(m)$,排序遞迴棧空間 $O(lgm)$。

題解三(合併區間 + 排序優化)

題解二中的排序時間可以優化。

由於我們是從前往後分解 nums 陣列,每分解一個質因子 prime 時,它一定可以更新該質數區間的末次出現位置。所以我們不用等到最後再做一次區間排序,直接在做質因數分解時維護 preEnd。在題解二中,我們是從區間的維度維護 preEnd,現在我們直接從 nums 陣列的維度維護 preEnd。

class Solution {
    fun findValidSplit(nums: IntArray): Int {
        val n = nums.size
        // start[p] 表示質數 p 首次出現為止
        val start = HashMap<Int, Int>()
        // end[i] 表示以 i 為左端點的區間的最大右端點
        val end = IntArray(n)
        // 質因數分解
        for ((index, num) in nums.withIndex()) {
            // 對 num 做質因數分解
            var x = num
            var prime = 2
            while (prime * prime <= x) {
                if (x % prime == 0) {
                    // 發現質因子
                    if (!start.containsKey(prime)) {
                        start[prime] = index
                    } else {
                        end[start[prime]!!] = index
                    }
                    // 消除所有 prime 因子
                    while (x % prime == 0) x /= prime
                }
                prime++
            }
            if (x > 1) {
                // 剩下的質因子
                if (!start.containsKey(x)) {
                    start[x] = index
                } else {
                    end[start[x]!!] = index
                }
            }
        }
        var preEnd = 0
        for (index in 0 until n) {
            if (index > preEnd) return index - 1
            preEnd = Math.max(preEnd, end[index])
        }
        return -1
    }
}

複雜度分析:

  • 時間複雜度:$O(n\sqrt{U}+m)$ 質因數分解時間 $O(n\sqrt{U})$,列舉陣列時間 $O(n)$;
  • 空間複雜度:$O(n)$ $end$ 陣列空間。

2585. 獲得分數的方法數(Hard)

題目地址

https://leetcode.cn/problems/number-of-ways-to-earn-points/

題目描述

考試中有 n 種型別的題目。給你一個整數 target 和一個下標從 0 開始的二維整數陣列 types ,其中 types[i] = [counti, marksi] 表示第 i 種型別的題目有 counti 道,每道題目對應 marksi 分。

返回你在考試中恰好得到 target 分的方法數。由於答案可能很大,結果需要對 109 +7 取餘。

注意,同型別題目無法區分。

  • 比如說,如果有 3 道同型別題目,那麼解答第 1 和第 2 道題目與解答第 1 和第 3 道題目或者第 2 和第 3 道題目是相同的。

題解(揹包問題)

這是分組揹包模板題,OIWiki-揹包 DP

定義 $dp[i][j]$ 表示以物品 $[i]$ 為止且分數為 $j$ 的方案數,則有:

$dp[i][j] = dp[i - 1][j] + \sum_{k=0}^{k=j/count_i}dp[i - 1][j - k*·marks_{si}]$

class Solution {
    fun waysToReachTarget(target: Int, types: Array<IntArray>): Int {
        val MOD = 1000000007
        // 揹包問題
        val n = types.size
        // dp[i][j] 表示以 [i] 為止且分數為 j 的方案數
        val dp = Array(n + 1) { IntArray(target + 1) }.apply {
            // 不選擇且分數為 0 的方案數為 1
            this[0][0] = 1
        }
        // 列舉物品
        for (i in 1..n) {
            val count = types[i - 1][0]
            val mark = types[i - 1][1]
            for (j in target downTo 0) {
                dp[i][j] += dp[i - 1][j]
                for (k in 1..Math.min(count, j / mark)) {
                    dp[i][j] = (dp[i][j] + dp[i - 1][j - k * mark]) % MOD
                }
            }
        }
        return dp[n][target]
    }
}

完全揹包可以取消物品維度優化空間:

class Solution {
    fun waysToReachTarget(target: Int, types: Array<IntArray>): Int {
        val MOD = 1000000007
        // 揹包問題
        val n = types.size
        // dp[i][j] 表示以 [i] 為止且分數為 j 的方案數
        val dp = IntArray(target + 1).apply {
            // 不選擇且分數為 0 的方案數為 1
            this[0] = 1
        }
        // 列舉物品
        for (i in 1..n) {
            val count = types[i - 1][0]
            val mark = types[i - 1][1]
            for (j in target downTo 0) {
                for (k in 1..Math.min(count, j / mark)) {
                    dp[j] = (dp[j] + dp[j - k * mark]) % MOD
                }
            }
        }
        return dp[target]
    }
}

複雜度分析:

  • 時間複雜度:$O(target·C)$ 其中 $C$ 是所有 $count_i$ 之和。
  • 空間複雜度:$O(target)$