win10下親測有效!(如果想在tensorrt+cuda下部署yolov8,直接看第五5章)
yolov8 官方倉庫: https://github.com/ultralytics/ultralytics
# 注:python其他版本在win10下,可能有坑,我已經替你踩坑了,這裡python3.9親測有效 conda create -n yolov8 python=3.9 -y conda activate yolov8 pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
模型下載地址:
# download offical weights(".pt" file) https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x6.pt
這裡下載yolov8n為例子,原圖圖下圖:
我們將影象和yolov8n.pt放到路徑:d:/Data/,推理:
yolo predict model="d:/Data/yolov8n.pt" source="d:/Data/6406407.jpg"
效果如圖:
在win10下,建立路徑:D:\CodePython\yolov8,將這個5Mb的資料集下載並解壓在目錄,coco128資料集快速下載:https://share.weiyun.com/C0noWh5W
如下圖:
新建train.py檔案,程式碼如下:、
from ultralytics import YOLO # Load a model # yaml會自動下載 model = YOLO("yolov8n.yaml") # build a new model from scratch model = YOLO("d:/Data/yolov8n.pt") # load a pretrained model (recommended for training) # Train the model results = model.train(data="coco128.yaml", epochs=100, imgsz=640)
訓練指令:
python train.py
如下圖訓練狀態:
《YOLOV8部署保姆教學》:https://www.cnblogs.com/feiyull/p/17066486.html
TensorRT-Alpha基於tensorrt+cuda c++實現模型end2end的gpu加速,支援win10、linux,在2023年已經更新模型:YOLOv8, YOLOv7, YOLOv6, YOLOv5, YOLOv4, YOLOv3, YOLOX, YOLOR,pphumanseg,u2net,EfficientDet。
Windows10教學正在製作,可以關注TensorRT-Alpha:https://github.com/FeiYull/TensorRT-Alpha