跟我學Python影象處理丨帶你掌握傅立葉變換原理及實現

2022-09-24 21:01:39
摘要:傅立葉變換主要是將時間域上的訊號轉變為頻率域上的訊號,用來進行影象除噪、影象增強等處理。

本文分享自華為雲社群《[Python影象處理] 二十二.Python影象傅立葉變換原理及實現》,作者:eastmount。

本文主要講解影象傅立葉變換的相關內容,在數位影像處理中,有兩個經典的變換被廣泛應用——傅立葉變換和霍夫變換。其中,傅立葉變換主要是將時間域上的訊號轉變為頻率域上的訊號,用來進行影象除噪、影象增強等處理。

影象傅立葉變換原理

傅立葉變換(Fourier Transform,簡稱FT)常用於數位訊號處理,它的目的是將時間域上的訊號轉變為頻率域上的訊號。隨著域的不同,對同一個事物的瞭解角度也隨之改變,因此在時域中某些不好處理的地方,在頻域就可以較為簡單的處理。同時,可以從頻域裡發現一些原先不易察覺的特徵。傅立葉定理指出「任何連續週期訊號都可以表示成(或者無限逼近)一系列正弦訊號的疊加。」

下面參照李老師「Python+OpenCV影象處理」中的一個案例,非常推薦同學們去學習。如下圖所示,他將某飲料的製作過程的時域角度轉換為頻域角度。

繪製對應的時間圖和頻率圖如下所示:

傅立葉公式如下,其中w表示頻率,t表示時間,為複變函數。它將時間域的函數表示為頻率域的函數f(t)的積分。

傅立葉變換認為一個周期函數(訊號)包含多個頻率分量,任意函數(訊號)f(t)可通過多個周期函數(或基函數)相加合成。從物理角度理解,傅立葉變換是以一組特殊的函數(三角函數)為正交基,對原函數進行線性變換,物理意義便是原函數在各組基函數的投影。如下圖所示,它是由三條正弦曲線組合成。

傅立葉變換可以應用於影象處理中,經過對影象進行變換得到其頻譜圖。從譜頻圖裡頻率高低來表徵影象中灰度變化劇烈程度。影象中的邊緣訊號和噪聲訊號往往是高頻訊號,而影象變化頻繁的影象輪廓及背景等訊號往往是低頻訊號。這時可以有針對性的對影象進行相關操作,例如影象除噪、影象增強和銳化等。

二維影象的傅立葉變換可以用以下數學公式(15-3)表達,其中f是空間域(Spatial Domain))值,F是頻域(Frequency Domain)值

對上面的傅立葉變換有了大致的瞭解之後,下面通過Numpy和OpenCV分別講解影象傅立葉變換的演演算法及操作程式碼。

二.Numpy實現傅立葉變換

Numpy中的 FFT包提供了函數 np.fft.fft2()可以對訊號進行快速傅立葉變換,其函數原型如下所示,該輸出結果是一個複數陣列(Complex Ndarry)。

fft2(a, s=None, axes=(-2, -1), norm=None)

  • a表示輸入影象,陣列狀的複雜陣列
  • s表示整數序列,可以決定輸出陣列的大小。輸出可選形狀(每個轉換軸的長度),其中s[0]表示軸0,s[1]表示軸1。對應fit(x,n)函數中的n,沿著每個軸,如果給定的形狀小於輸入形狀,則將剪下輸入。如果大於則輸入將用零填充。如果未給定’s’,則使用沿’axles’指定的軸的輸入形狀
  • axes表示整數序列,用於計算FFT的可選軸。如果未給出,則使用最後兩個軸。「axes」中的重複索引表示對該軸執行多次轉換,一個元素序列意味著執行一維FFT
  • norm包括None和ortho兩個選項,規範化模式(請參見numpy.fft)。預設值為無

Numpy中的fft模組有很多函數,相關函數如下:

#計算一維傅立葉變換
numpy.fft.fft(a, n=None, axis=-1, norm=None)
#計算二維的傅立葉變換
numpy.fft.fft2(a, n=None, axis=-1, norm=None)
#計算n維的傅立葉變換
numpy.fft.fftn()
#計算n維實數的傅立葉變換
numpy.fft.rfftn()
#返回傅立葉變換的取樣頻率
numpy.fft.fftfreq()
#將FFT輸出中的直流分量移動到頻譜中央
numpy.fft.shift()

下面的程式碼是通過Numpy庫實現傅立葉變換,呼叫np.fft.fft2()快速傅立葉變換得到頻率分佈,接著呼叫np.fft.fftshift()函數將中心位置轉移至中間,最終通過Matplotlib顯示效果圖。

# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
#讀取影象
img = cv.imread('test.png', 0)
#快速傅立葉變換演演算法得到頻率分佈
f = np.fft.fft2(img)
#預設結果中心點位置是在左上角,
#呼叫fftshift()函數轉移到中間位置
fshift = np.fft.fftshift(f) 
#fft結果是複數, 其絕對值結果是振幅
fimg = np.log(np.abs(fshift))
#展示結果
plt.subplot(121), plt.imshow(img, 'gray'), plt.title('Original Fourier')
plt.axis('off')
plt.subplot(122), plt.imshow(fimg, 'gray'), plt.title('Fourier Fourier')
plt.axis('off')
plt.show()

輸出結果如圖15-2所示,左邊為原始影象,右邊為頻率分佈圖譜,其中越靠近中心位置頻率越低,越亮(灰度值越高)的位置代表該頻率的訊號振幅越大。

三.Numpy實現傅立葉逆變換

下面介紹Numpy實現傅立葉逆變換,它是傅立葉變換的逆操作,將頻譜影象轉換為原始影象的過程。通過傅立葉變換將轉換為頻譜圖,並對高頻(邊界)和低頻(細節)部分進行處理,接著需要通過傅立葉逆變換恢復為原始效果圖。頻域上對影象的處理會反映在逆變換影象上,從而更好地進行影象處理。

影象傅立葉變化主要使用的函數如下所示:

#實現影象逆傅立葉變換,返回一個複數陣列
numpy.fft.ifft2(a, n=None, axis=-1, norm=None)
#fftshit()函數的逆函數,它將頻譜影象的中心低頻部分移動至左上角
numpy.fft.fftshift()
#將複數轉換為0至255範圍
iimg = numpy.abs(逆傅立葉變換結果)

下面的程式碼分別實現了傅立葉變換和傅立葉逆變換。

# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
#讀取影象
img = cv.imread('Lena.png', 0)
#傅立葉變換
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
res = np.log(np.abs(fshift))
#傅立葉逆變換
ishift = np.fft.ifftshift(fshift)
iimg = np.fft.ifft2(ishift)
iimg = np.abs(iimg)
#展示結果
plt.subplot(131), plt.imshow(img, 'gray'), plt.title('Original Image')
plt.axis('off')
plt.subplot(132), plt.imshow(res, 'gray'), plt.title('Fourier Image')
plt.axis('off')
plt.subplot(133), plt.imshow(iimg, 'gray'), plt.title('Inverse Fourier Image')
plt.axis('off')
plt.show()

輸出結果如圖15-4所示,從左至右分別為原始影象、頻譜影象、逆傅立葉變換轉換影象。

四.OpenCV實現傅立葉變換

OpenCV 中相應的函數是cv2.dft()和用Numpy輸出的結果一樣,但是是雙連結的。第一個通道是結果的實數部分,第二個通道是結果的虛數部分,並且輸入影象要首先轉換成 np.float32 格式。其函數原型如下所示:

dst = cv2.dft(src, dst=None, flags=None, nonzeroRows=None)

  • src表示輸入影象,需要通過np.float32轉換格式
  • dst表示輸出影象,包括輸出大小和尺寸
  • flags表示轉換標記,其中DFT _INVERSE執行反向一維或二維轉換,而不是預設的正向轉換;DFT _SCALE表示縮放結果,由陣列元素的數量除以它;DFT _ROWS執行正向或反向變換輸入矩陣的每個單獨的行,該標誌可以同時轉換多個向量,並可用於減少開銷以執行3D和更高維度的轉換等;DFT _COMPLEX_OUTPUT執行1D或2D實陣列的正向轉換,這是最快的選擇,預設功能;DFT _REAL_OUTPUT執行一維或二維複數陣列的逆變換,結果通常是相同大小的複數陣列,但如果輸入陣列具有共軛複數對稱性,則輸出為真實陣列
  • nonzeroRows表示當引數不為零時,函數假定只有nonzeroRows輸入陣列的第一行(未設定)或者只有輸出陣列的第一個(設定)包含非零,因此函數可以處理其餘的行更有效率,並節省一些時間;這種技術對計算陣列互相關或使用DFT折積非常有用

注意,由於輸出的頻譜結果是一個複數,需要呼叫cv2.magnitude()函數將傅立葉變換的雙連結結果轉換為0到255的範圍。其函數原型如下:

cv2.magnitude(x, y)

  • x表示浮點型X座標值,即實部
  • y表示浮點型Y座標值,即虛部
    最終輸出結果為幅值,即:

完整程式碼如下所示:

# -*- coding: utf-8 -*-
import numpy as np
import cv2
from matplotlib import pyplot as plt
#讀取影象
img = cv2.imread('Lena.png', 0)
#傅立葉變換
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
#將頻譜低頻從左上角移動至中心位置
dft_shift = np.fft.fftshift(dft)
#頻譜影象雙連結複數轉換為0-255區間
result = 20*np.log(cv2.magnitude(dft_shift[:,:,0], dft_shift[:,:,1]))
#顯示影象
plt.subplot(121), plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(result, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

輸出結果如圖15-5所示,左邊為原始「Lena」圖,右邊為轉換後的頻譜影象,並且保證低頻位於中心位置。

五.OpenCV實現傅立葉逆變換

在OpenCV 中,通過函數cv2.idft()實現傅立葉逆變換,其返回結果取決於原始影象的型別和大小,原始影象可以為實數或複數。其函數原型如下所示:

dst = cv2.idft(src[, dst[, flags[, nonzeroRows]]])

  • src表示輸入影象,包括實數或複數
  • dst表示輸出影象
  • flags表示轉換標記
  • nonzeroRows表示要處理的dst行數,其餘行的內容未定義(請參閱dft描述中的折積範例)

完整程式碼如下所示:

# -*- coding: utf-8 -*-
import numpy as np
import cv2
from matplotlib import pyplot as plt
#讀取影象
img = cv2.imread('Lena.png', 0)
#傅立葉變換
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
dftshift = np.fft.fftshift(dft)
res1= 20*np.log(cv2.magnitude(dftshift[:,:,0], dftshift[:,:,1]))
#傅立葉逆變換
ishift = np.fft.ifftshift(dftshift)
iimg = cv2.idft(ishift)
res2 = cv2.magnitude(iimg[:,:,0], iimg[:,:,1])
#顯示影象
plt.subplot(131), plt.imshow(img, 'gray'), plt.title('Original Image')
plt.axis('off')
plt.subplot(132), plt.imshow(res1, 'gray'), plt.title('Fourier Image')
plt.axis('off')
plt.subplot(133), plt.imshow(res2, 'gray'), plt.title('Inverse Fourier Image')
plt.axis('off')
plt.show()

輸出結果如圖15-6所示,第一幅圖為原始「Lena」圖,第二幅圖為傅立葉變換後的頻譜影象,第三幅圖為傅立葉逆變換,頻譜影象轉換為原始影象的過程。

六.總結

傅立葉變換的目的並不是為了觀察影象的頻率分佈(至少不是最終目的),更多情況下是為了對頻率進行過濾,通過修改頻率以達到影象增強、影象去噪、邊緣檢測、特徵提取、壓縮加密等目的。下一篇文章,作者將結合傅立葉變換和傅立葉逆變換講解它的應用。

 

點選關注,第一時間瞭解華為雲新鮮技術~