獲取程式碼方式1:
完整程式碼已上傳我的資源:【力學】基於matlab立銑刀力模擬模擬【含Matlab原始碼 193期】
獲取程式碼方式2:
通過訂閱紫極神光部落格付費專欄,憑支付憑證,私信博主,可獲得此程式碼。
備註:
訂閱紫極神光部落格付費專欄,可免費獲得1份程式碼(有效期為訂閱日起,三天內有效);
% m file to simulate helical end milling forces %
clear;
% Angle conversions
d2r = pi/180; % degree to radian
r2d = 180/pi; % radian to degree
% Workpeice data %
% AL 6061 %
tau_s = 209.24; % shear strength [N/mm2]
phi_c = 27.67*d2r; % shear angle [rad]
B_a = 32.27*d2r; % Friction angle [rad]
kte = 23.66; % tangential edge force coefficent [N/mm]
kfe = 5.57; % normal edge force coefficent [N/mm]
% 4 flute HSS cylindrical endmill %
D = 25.4; % diameter [mm]
r = D/2; % radius [mm]
B = d2r*30.0; % helix angle [rad]
a_n = d2r*5.0; % normal rake angle [rad]
Nf = 2; % number of flutes []
% Machining conditions %
n = 1200; % spindle speed [rpm]
a = 4.0; % axis depth of cut [mm]
f = 1200; % feedrate [mm/min]
calib_factor = 200; % force calibration factor [N/V]
% Assumptions %
i = B; % oblique angle = helix angle [rad]
eta = i; % chip flow angle = oblique angle [rad] [Stabler's chip flow rule]
B_n=atan(tan(B_a)*cos(eta)); %[rad] Friction Coefficient Ba and Shear Stress, Ts, are the same in both orthogonal & Oblique Cutting
phi_n = phi_c; %[rad] Orthogonal Shear Angle = Normal Shear Angle in Oblique
a_r = a_n; %[rad] Orthogonal Normal Rake Angle = Rake Angle in Oblique
kre = kfe; %[N/mm] Normal Edge Force Coefficient in Orthogonal Cutting is Equivalent to Radial Edge Force in Milling
% Feed Per Tooth
c = f/(Nf*n); % feed per tooth [mm]
% Cutting coefficents
den = sqrt(cos(phi_n+B_n-a_n)^2 + tan(eta)^2*sin(B_n)^2); % Denominator
ktc = (tau_s/sin(phi_c))*(cos(B_n-a_n)+tan(i)*tan(eta)*sin(B_n))/(den);
krc = (tau_s/sin(phi_c))*(cos(B_n-a_n)*tan(i)-tan(eta)*sin(B_n))/(den);
kfc = (tau_s/(sin(phi_c)*cos(i)))*((sin(B_n-a_n))/(den));
% Discritization %
Ts = 0.0001; % Sampling period [sec]
Trev = (n/60); % period of one revolution [sec]
rot_number = 4; % number of revolutions to consider []
dphi = Trev*2*pi*Ts; % angular increment
phi = (0:dphi:rot_number*2*pi); % rotation array for bottom of flute 1 [rad]
Nt = length(phi); % number of time (or rotation) samples to consider
t = (0:Ts:rot_number/Trev); % time array
%t_meas = (0:ts:(N_meas-1)*Ts)' % time array for measured forces [sec]
phi_p = (2*pi)/Nf; % Angle between teeth [rad]
% Vertical Integration %
dz = 0.1; % vertical integration increment [mm]
Nz = a/dz; % number of vertical segments
z = (dz:dz:a); % [mm] vertical integration array
% Immersion %
im = [0.25,0.5,0.75,1]*D; %[mm] Downmilling 1/4,1/2,3/4,1
% allocate array; columns are each immersion%
Fx = zeros(length(im),Nt); % x axis force history [N]
Fy = zeros(length(im),Nt); % y axis force history [N]
Ft = zeros(length(im),Nt); % t axis force history [N]
F = zeros(length(im),Nt); % resultant force history (in x-y plane) [N]
T = zeros(length(im),Nt); % torque history [N*m]
P = zeros(length(im),Nt); % Power history
% Main Loop for Simulation %
for count=1:length(im)
phi_st = pi - (acos((r-im(count))/r)); % [rad] start angle
phi_ex = pi; %[rad] exit angle
for kt=1:Nt % Rotation counter
for kz=1:Nz
for kf=1:Nf
phi_bottom = phi(kt) + phi_p*(kz-1); % Immersion angle for tooth
si = ((2*tan(B)*z(kf))/D); % Correction factor for helx
phi_cur = phi_bottom-si; % Current phi
% Ensure current angle between 0 and 2pi
if phi_cur>=0
phi_cur2=phi_cur-2*pi*floor(phi_cur/(2*pi));
else
phi_cur2=phi_cur+2*pi*floor(-phi_cur/(2*pi)+1);
end
if (phi_cur2>=phi_st) && (phi_cur2 <=phi_ex)
h = c*sin(phi_cur2);
dFt = dz * (ktc * h + kte); % tangential force contribution [N]
dFr = dz * (krc * h + kre); % radial force contribution [N]
dFx = -dFt*cos(phi_cur2) - dFr*sin(phi_cur2); % x axis force contribution [N]
dFy = dFt*sin(phi_cur2) - dFr*cos(phi_cur2); % y axis force contribution [N]
% (dF dFR dFx dFy)
Ft(count,kt) = Ft(count,kt) + dFt; % Intregrate tangential force contribution
Fx(count,kt) = Fx(count,kt) + dFx; % Intregrate x axis force contribution
Fy(count,kt) = Fy(count,kt) + dFy; % Intregrate y axis force contribution
end
end
end
F(count,kt) = sqrt(Fx(count,kt)^2 + Fy(count,kt)^2); % resultant Cutting forces history [N]
T(count,kt) = 1e-3*(D/2)*Ft(count,kt); % cutting torque history [N*m]
P(count,kt) = T(count,kt)*n*2*pi/60; % Power [W]
end
end
1 matlab版本
2014a
2 參考文獻
[1] 門雲閣.MATLAB物理計算與視覺化[M].清華大學出版社,2013.