import requests
from lxml import etree
if __name__=="__main__":
url='https://jh.58.com/ershoufang/'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36'
}
response = requests.get(url=url,headers=headers).text
tree=etree.HTML(response)
li_list=tree.xpath('//ul[@class="house-list-wrap"]/li')
for li in li_list:
title=li.xpath('./div[2]/h2/a/text()')[0]
print(title)
import requests
from lxml import etree
headers={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36'
}
url='https://www.aqistudy.cn/historydata/'
page_text=requests.get(url=url,headers=headers).text
tree=etree.HTML(page_text)
hot_city=tree.xpath('//div[@class="bottom"]/ul/li/a/text()')
all_city=tree.xpath('//div[@class="bottom"]/ul/div[2]/li/a/text()')
print(hot_city)
import requests
from lxml import etree
import os
dirname='star1'
if not os.path.exists(dirname):
os.mkdir(dirname)
url='http://pic.netbian.com/4kmingxing/index_%d.html'#爬取多頁內容
for i in range(1,6):
if i==1:
new_url='http://pic.netbian.com/4kmingxing/'
else:
new_url=format(url%i)
#url='http://pic.netbian.com/4kmingxing/'爬取一頁的內容
headers={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36'
}
response=requests.get(url=new_url,headers=headers)
response.encoding='gbk'
page_text=response.text
tree=etree.HTML(page_text)
li_list=tree.xpath('//div[@class="slist"]/ul/li')
for li in li_list:
title=li.xpath('./a/img/@alt')[0]+'.jpg'
img_src='http://pic.netbian.com'+li.xpath('./a/img/@src')[0]
img_data=requests.get(url=img_src,headers=headers).content
imgpath=dirname+'/'+title
with open(imgpath,'wb') as fp:
fp.write(img_data)
print(title,'儲存成功!')
#範例一
'''import asyncio
async def func():
print("請稍後...")
response=await asyncio.sleep(2)
print("歡迎",response)
asyncio.run(func())'''
#範例二
'''import asyncio
async def others():
print("start")
await asyncio.sleep(2)
print("end")
return "返回值"
async def func():
print("執行協程函數內部程式碼")
response=await others()
print("IO請求結束,結果為:",response)
asyncio.run(func())'''
#範例三
import asyncio
async def others():
print("start")
await asyncio.sleep(2)
print("end")
return "返回值"
async def func():
print("執行協程函數內部程式碼")
response1=await others()
print("IO請求結束,結果為:",response1)
response2 = await others()
print("IO請求結束,結果為:", response2)
asyncio.run(func())
import asyncio
import time
async def get_request(url):
print("正在請求:",url)
time.sleep(2)
print("請求已完成!")
return 'jackson'
def back(t):
#result返回的就是特殊函數的返回值
print('t.result返回的是:',t.result())
if __name__=="__main__":
#這是一個協程物件
c=get_request('www.baidu.com')
#任務物件就是對協程的進一步封裝
task=asyncio.ensure_future(c)
#繫結一個回撥函數
task.add_done_callback(back)
#建立事件迴圈物件
loop=asyncio.get_event_loop()
#將任務物件註冊到事件迴圈中且開啟事件迴圈
loop.run_until_complete(task)
'''import asyncio
async def func():
print(1)
await asyncio.sleep(2)
print(2)
return "返回值"
async def main():
print("main開始")
task1=asyncio.create_task(func())
task2=asyncio.create_task(func())
print("main結束")
re1=await task1
re2=await task2
print(re1,re2)
asyncio.run(main())'''
import asyncio
async def func():
print(1)
await asyncio.sleep(2)
print(2)
return "返回值"
async def main():
print("mian開始")
task_list=[
asyncio.create_task(func()),
asyncio.create_task(func())
]
print("main結束")
result=await asyncio.wait(task_list)
print(result)
asyncio.run(main())
from greenlet import greenlet
def func1():
print(1)
res2.switch()
print(2)
res2.switch()
def func2():
print(3)
res1.switch()
print(4)
res1=greenlet(func1)
res2=greenlet(func2)
res1.switch()
def func1():
yield 1
yield from func2()
yield 2
def func2():
yield 3
yield 4
f1=func1()
for item in f1:
print(item)
import asyncio
import time
'''async def get_request(url):
print("正在請求:",url)
time.sleep(2)#time是不支援非同步模組的程式碼
print("請求已完成!")
return 'jackson'
'''
async def get_request(url):
print("正在請求:",url)
await asyncio.sleep(2)#支援非同步模組的程式碼
print("請求已完成!")
return 'jackson'
def back(t):
#result返回的就是特殊函數的返回值
print('t.result返回的是:',t.result())
urls=[
'www.baidu1.0.com',
'www.baidu2.0.com',
'www.baidu3.0.com'
]
if __name__=="__main__":
start=time.time()
tasks=[]
#建立協程物件
for url in urls:
c=get_request(url)
#建立任務物件
task=asyncio.ensure_future(c)
task.add_done_callback(back)
tasks.append(task)
#建立事件迴圈物件
loop=asyncio.get_event_loop()
#loop.run_until_complete(tasks)
#必須使用wait對tasks進行封裝才能執行成功
loop.run_until_complete(asyncio.wait(tasks))
print("總耗時:", time.time() - start)
import asyncio
import time
import aiohttp
urls=[
'http://127.0.0.1:8000/jackson',
'http://127.0.0.1:8000/jing',
'http://127.0.0.1:8000/jack',
]
'''async def get_request(url):
#requests是一個不支援非同步的模組
page_text=requests.get(url=url).text
return page_text
'''
async def get_request(url):
#範例化好一個請求物件
async with aiohttp.ClientSession() as se:
#呼叫get發起請求,返回一個響應物件
async with await se.get(url=url) as response:
#獲取字串形式的響應資料
page_text=await response.text()
return page_text
if __name__=="__main__":
start = time.time()
tasks = []
# 建立協程物件
for url in urls:
c = get_request(url)
# 建立任務物件
task = asyncio.ensure_future(c)
tasks.append(task)
# 建立事件迴圈物件
loop = asyncio.get_event_loop()
# loop.run_until_complete(tasks)
# 必須使用wait對tasks進行封裝才能執行成功
loop.run_until_complete(asyncio.wait(tasks))
print("總耗時:", time.time() - start)
import requests
from lxml import etree
import re
from multiprocessing.dummy import Pool
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36'
}
url='https://www.pearvideo.com/category_5'
response = requests.get(url=url,headers=headers).text
tree=etree.HTML(response)
li_list=tree.xpath('//ul[@id="listvideoListUl"]/li')
urls=[]#儲存所有視訊的連結和名字
for li in li_list:
detail_url='https://www.pearvideo.com/'+li.xpath('./div/a/@href')[0]
name=li.xpath('./div/a/div[2]/text()')[0]+'.MP4'
#對詳情頁的url發起請求
detail_response=requests.get(url=detail_url,headers=headers).text
#從詳情頁中解析出視訊的地址(url)
ex='srcUrl="(.*?)",vdoUrl'
video_url=re.findall(ex,detail_response)[0]
dic={
'name':name,
'url':video_url
}
urls.append(dic)
#對視訊連結髮起請求獲取視訊的二進位制資料,然後將視訊資料進行返回
def get_video_data(dic):
url=dic['url']
print(dic['name'],'正在下載...')
data=requests.get(url=url,headers=headers).content
#持久化儲存操作
with open(dic['name'],'wb') as fp:
fp.write(data)
print(dic['name'],'下載完成')
#使用執行緒池對視訊資料進行請求(較為耗時的阻塞操作)
pool=Pool(4)
pool.map(get_video_data,urls)
pool.close()
pool.join()
from selenium import webdriver
import time
#匯入動作鏈對應的類
from selenium.webdriver import ActionChains
bro=webdriver.Chrome(executable_path='E:/firefoxdownloads/chromedriver.exe')
bro.get('https://www.runoob.com/try/try.php?filename=jqueryui-api-droppable')
#如果定位的標籤是存在於iframe標籤中的則必須進行標籤定位
bro.switch_to.frame('iframeResult')#切換瀏覽器定位的作用域
div=bro.find_element_by_id('draggable')
#動作鏈
action=ActionChains(bro)
#點選長按指定的標籤
action.click_and_hold(div)
for i in range(5):
#perform立即執行動作鏈操作
#move_by_offset(x,y)
action.move_by_offset(20,0).perform()
time.sleep(0.3)
#釋放動作鏈
action.release()
bro.quit()
from selenium import webdriver
import time
#基於瀏覽器的驅動程式範例化一個瀏覽器物件
bro=webdriver.Chrome(executable_path='E:/firefoxdownloads/chromedriver.exe')
#對目的網站發起請求
bro.get('https://www.jd.com')
#標籤定位
search_text=bro.find_element_by_xpath('//*[@id="key"]')
#標籤互動
search_text.send_keys('iphone11')
#點選搜尋按鈕
bth=bro.find_element_by_xpath('//*[@id="search"]/div/div[2]/button')
bth.click()
time.sleep(2)
#在搜尋結果頁面進行滾輪向下滑動的操作(執行js操作:js注入)
bro.execute_script('window.scrollTo(0,document.body.scrollHeight)')
time.sleep(2)
bro.get('https://www.baidu.com')
time.sleep(2)
#回退
bro.back()
time.sleep(2)
#前進
bro.forward()
bro.quit()
from selenium import webdriver
import time
from selenium.webdriver import ActionChains
bro=webdriver.Chrome(executable_path='E:/firefoxdownloads/chromedriver.exe')
bro.get('https://qzone.qq.com/')
bro.switch_to.frame('login_frame')
a_tag=bro.find_element_by_id('switcher_plogin')
a_tag.click()
username=bro.find_element_by_id('u')
password=bro.find_element_by_id('p')
time.sleep(2)
username.send_keys('')
time.sleep(2)
password.send_keys('')
time.sleep(2)
btn=bro.find_element_by_id('login_button')
btn.click()
time.sleep(2)
bro.quit()
[外連圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片儲存下來直接上傳(img-TvOX2w28-1603003392292)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20200824094432380.png)]
import scrapy
class QiubaiSpider(scrapy.Spider):
name = 'qiubai'
#allowed_domains = ['www.xxx.com']
start_urls = ['https://www.qiushibaike.com/text/']
def parse(self, response):
#解析:作者的名稱+段子內容
div_list=response.xpath('//div[@class="col1 old-style-col1"]/div')
all_data=[]#儲存所有解析到的資料
for div in div_list:
#xpath返回的是列表,但列表元素一定是selector型別的物件
#extract可以將selector物件中data引數儲存的字串提取出來
author=div.xpath('./div[1]/a[2]/h2/text()')[0].extract()
#列表呼叫了extract之後,則表示將列表中每一個selector物件中data對應的字串提取出來
content=div.xpath('./a[1]/div/span//text()').extract()
content=''.join(content)#轉為字串型別
dic={
'author':author,
'content':content
}
all_data.append(dic)
return all_data
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36'
ROBOTSTXT_OBEY = False
LOG_LEVEL='ERROR'
import scrapy
from qiubaipro.items import QiubaiproItem
class QiubaiSpider(scrapy.Spider):
name = 'qiubai'
#allowed_domains = ['www.xxx.com']
start_urls = ['https://www.qiushibaike.com/text/']
def parse(self, response):
#解析:作者的名稱+段子內容
div_list=response.xpath('//div[@class="col1 old-style-col1"]/div')
all_data=[]#儲存所有解析到的資料
for div in div_list:
#xpath返回的是列表,但列表元素一定是selector型別的物件
#extract可以將selector物件中data引數儲存的字串提取出來
author=div.xpath('./div[1]/a[2]/h2/text()')[0].extract()
#列表呼叫了extract之後,則表示將列表中每一個selector物件中data對應的字串提取出來
content=div.xpath('./a[1]/div/span//text()').extract()
content=''.join(content)#轉為字串型別
item=QiubaiproItem()
item['author']=author
item['content']=content
yield item#將item提交給管道
# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html
import scrapy
class QiubaiproItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
author=scrapy.Field()
content=scrapy.Field()
#pass
# Scrapy settings for qiubaipro project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
# https://docs.scrapy.org/en/latest/topics/settings.html
# https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
# https://docs.scrapy.org/en/latest/topics/spider-middleware.html
BOT_NAME = 'qiubaipro'
SPIDER_MODULES = ['qiubaipro.spiders']
NEWSPIDER_MODULE = 'qiubaipro.spiders'
pipeline.html
ITEM_PIPELINES = {
'qiubaipro.pipelines.QiubaiproPipeline': 300,
}
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
# useful for handling different item types with a single interface
from itemadapter import ItemAdapter
class QiubaiproPipeline:
fp=None
#重寫父類別的一個方法:該方法只在開始爬蟲的時候呼叫一次
def open_spider(self,spider):
print("開始爬蟲...")
self.fp=open('./qiubai.txt','w',encoding='utf-8')
#專門用來處理item型別物件
#該方法可以接收爬蟲檔案提交過來的item物件
#該方法每接收到一個item就會被呼叫一次
def process_item(self, item, spider):
author=item['author']
content=item['content']
self.fp.write(author+':'+content+'\n')
return item
def close_spider(self,spider):
print("結束爬蟲!")
self.fp.close()
import scrapy
from imgpro.items import ImgproItem
class ImgSpider(scrapy.Spider):
name = 'img'
#allowed_domains = ['www.xxx.com']
start_urls = ['http://sc.chinaz.com/tupian/']
def parse(self, response):
div_list=response.xpath('//div[@id="container"]/div')
for div in div_list:
#使用偽屬性,只有滑動才能顯示src,本身為src2
src=div.xpath('./div/a/img/@src2').extract_first()
item=ImgproItem()
item['src']=src
yield item
# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html
import scrapy
class ImgproItem(scrapy.Item):
# define the fields for your item here like:
src = scrapy.Field()
pass
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36'
ROBOTSTXT_OBEY = False
LOG_LEVEL='ERROR'
#指定圖片儲存目錄
IMAGES_STORE='./imgs'
https://docs.scrapy.org/en/latest/topics/extensions.html
#需要改變pipelines.py檔案指定的imgpipeline
ITEM_PIPELINES = {
'imgpro.pipelines.imgpipeline': 300,
}
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
# useful for handling different item types with a single interface
from itemadapter import ItemAdapter
# class ImgproPipeline:
# def process_item(self, item, spider):
# return item
from scrapy.pipelines.images import ImagesPipeline
import scrapy
class imgpipeline(ImagesPipeline):
#可以根據圖片地址進行圖片資料的請求
def get_media_requests(self, item, info):
yield scrapy.Request(item['src'])
#指定圖片儲存的路徑
def file_path(self, request, response=None, info=None):
imgname=request.url.split('/')[-1]
return imgname
def item_completed(self, results, item, info):
return item #返回下一個即將執行的管道類
import scrapy
from selenium import webdriver
from wangyipro.items import WangyiproItem
class WangyiSpider(scrapy.Spider):
name = 'wangyi'
#allowed_domains = ['www.xxx.com']
start_urls = ['https://news.163.com/']
models_url=[]#儲存五個板塊對應的url
#解析五大板塊對應的詳情頁url
def __init__(self):
self.bro=webdriver.Chrome(executable_path='E:/firefoxdownloads/chromedriver.exe')
def parse(self, response):
li_list=response.xpath('//*[@id="index2016_wrap"]/div[1]/div[2]/div[2]/div[2]/div[2]/div/ul/li')
alist=[3,4,6,7,8]
for index in alist:
model_url=li_list[index].xpath('./a/@href').extract_first()
self.models_url.append(model_url)
#依次對每一個板塊對應的頁面進行請求
for url in self.models_url:#對每一個板塊的url進行請求傳送
yield scrapy.Request(url,callback=self.parse_model)
#每一個板塊對應的新聞標題相關的內容都是動態載入的
def parse_model(self,response):
#解析每一個板塊對應新聞的標題和新聞詳情頁url
div_list=response.xpath('/html/body/div/div[3]/div[4]/div[1]/div/div/ul/li/div/div')
for div in div_list:
title=div.xpath('./div/div[1]/h3/a/text()').extract_first()
new_detail_url=div.xpath('./div/div[1]/h3/a/@href').extract_first()
item=WangyiproItem()
item['title']=title
#對新聞詳情頁的url發起請求
yield scrapy.Request(url=new_detail_url,callback=self.parse_detail,meta={'item':item})
def parse_detail(self,response):#解析新聞內容
content=response.xpath('//*[@id="endText"]//text()').extract()
content=''.join(content)
item=response.meta['item']
item['content']=content
yield item
def closed(self,spider):
self.bro.quit()
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
# useful for handling different item types with a single interface
from itemadapter import ItemAdapter
class WangyiproPipeline:
def process_item(self, item, spider):
print(item)
return item
# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html
import scrapy
class WangyiproItem(scrapy.Item):
# define the fields for your item here like:
title = scrapy.Field()
content = scrapy.Field()
# Define here the models for your spider middleware
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/spider-middleware.html
from scrapy import signals
# useful for handling different item types with a single interface
from itemadapter import is_item, ItemAdapter
from scrapy.http import HtmlResponse
from time import sleep
class WangyiproDownloaderMiddleware:
# Not all methods need to be defined. If a method is not defined,
# scrapy acts as if the downloader middleware does not modify the
# passed objects.
def process_request(self, request, spider):
# Called for each request that goes through the downloader
# middleware.
# Must either:
# - return None: continue processing this request
# - or return a Response object
# - or return a Request object
# - or raise IgnoreRequest: process_exception() methods of
# installed downloader middleware will be called
return None
#該方法攔截五大板塊對應的響應物件進行篡改
def process_response(self, request, response, spider):#spider爬蟲物件
bro=spider.bro #獲取在爬蟲中定義的瀏覽器物件
#挑選出指定的響應物件進行篡改,通過url制定request,再通過request制定response
if request.url in spider.models_url:
bro.get(request.url)#五個板塊對應的url進行請求
sleep(2)
page_text=bro.page_source #包含了動態載入的新聞資料
#response #五大板塊對應的響應物件
#針對定位到的這些response進行篡改
#範例化一個新的響應物件(符合需求:包含動態載入出的新聞資料),代替原來舊的響應物件
#如何獲取動態載入出的新聞資料?
new_response=HtmlResponse(url=request.url,body=page_text,encoding='utf-8',request=request)
return new_response
else:
#response #其他請求對應的響應物件
return response
def process_exception(self, request, exception, spider):
# Called when a download handler or a process_request()
# (from other downloader middleware) raises an exception.
# Must either:
# - return None: continue processing this exception
# - return a Response object: stops process_exception() chain
# - return a Request object: stops process_exception() chain
pass
BOT_NAME = 'wangyipro'
SPIDER_MODULES = ['wangyipro.spiders']
NEWSPIDER_MODULE = 'wangyipro.spiders'
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36'
ROBOTSTXT_OBEY = False
LOG_LEVEL='ERROR'
DOWNLOADER_MIDDLEWARES = {
'wangyipro.middlewares.WangyiproDownloaderMiddleware': 543,
}
ITEM_PIPELINES = {
'wangyipro.pipelines.WangyiproPipeline': 300,
}