原題連結:
https://www.luogu.com.cn/problem/P1642
首先看題, 求 ∑ a i ∑ b i \frac{\sum a_i} { \sum b_i} ∑bi∑ai的最大值不禁讓人聯想到0/1分數規劃, 然後再看, 這一張圖是一棵樹, 然後又要選擇剛好n - m個節點, 這不就是一個有依賴的揹包嗎?那麼就簡單了, 首先我們可以確定一個根節點, 然後我們進行遞迴, 每次搜到一個節點就按照分組揹包裝其子節點, 然後若是這樣選, 那此節點一定必須選, 就強制放入當前節點的揹包。
#include <cstdio>
#include <algorithm>
using namespace std;
#define MAXN 100
#define INF 1<<30
double dp[MAXN + 5][MAXN + 5];//揹包
double sa[MAXN + 5], sb[MAXN + 5];//sa:汙染, sb:價值
double c[MAXN + 5];//sa - sb * mid
int q[MAXN + 5];//以i節點為根的子樹的節點個數
struct node {
int ed;
node *next;
}s[MAXN + 5];//鄰接表
void push (int x, int y) {
node *p;
p = new node;
p->ed = y;
p->next = s[x].next;
s[x].next = p;
}
void dfs (int l, int f, int m) {
q[l] = 1;
dp[l][0] = 0;
for (node *i = s[l].next; i != 0; i = i->next) {
if (i->ed == f) {
continue;
}
dfs (i->ed, l, m);
q[l] += q[i->ed];
for (int j = min(q[l], m); j >= 0; j --) {
for (int k = 0; k <= j && k <= q[i->ed]; k ++) {
dp[l][j] = max (dp[l][j], dp[l][j - k] + dp[i->ed][k]);
}
}
}
for (int i = min (m, q[l]); i >= 1; i --) {
dp[l][i] = dp[l][i - 1] + c[l];
}
}
int main () {
int n, m;
scanf ("%d %d", &n, &m);
for (int i = 1; i <= n; i ++) {
scanf ("%lf", &sa[i]);
}
for (int i = 1; i <= n; i ++) {
scanf ("%lf", &sb[i]);
}
for (int i = 1; i < n; i ++) {
int x, y;
scanf ("%d %d", &x, &y);
push (x, y);
push (y, x);
}
double l = 0, r = 1000000;
while (r - l > 1e-4) {
for (int i = 1; i <= n; i ++) {
for (int j = 0; j <= n - m; j ++) {
dp[i][j] = -INF;
}
}
double mid = (l + r) / 2;
for (int i = 1; i <= n; i ++) {
c[i] = sa[i] - sb[i] * mid;
}
dfs (1, 0, n - m);
bool bl = 0;
for (int i = 1; i <= n; i ++) {
if (dp[i][n - m] > -0.000001) {
bl = 1;
break;
}
}
if (bl) {
l = mid;
}
else {
r = mid;
}
}
printf ("%.1lf", l);
}